
Edith Hofer

Master’s Thesis

Component-based
Web Development

Integration of JPF into JBoss

Institute for Genomics and Bioinformatics,
Graz University of Technology

Petersgasse 14, 8010 Graz, Austria
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Zlatko Trajanoski

Supervisor:
Dipl.-Ing. Dr. Gerhard Thallinger

Evaluator:
Univ.-Prof. Dipl.-Ing. Dr. Zlatko Trajanoski

Graz, May 2007

Abstract

German

Für Bio-Wissenschaften werden in zunehmendem Maße Web Applikationen
entwickelt, welche die Wissenschafter bei der Verwaltung und Auswertung
von Daten unterstützen.

Diese Applikationen beinhalten oft Teile, die auch in anderen Web App-
likationen in ähnlicher Form wieder gefunden werden können.

Um Zeit und Entwicklungsaufwand zu sparen, sollten für die Erstellung
einer neuen Applikation bereits existierende Komponenten von anderen Ap-
plikationen wiederverwendet werden.

Ein Modul, das für die Zusammenstellung einer neuen Applikation be-
nutzt wird, bsteht aus der Business Logik, den Definitionen der Tabellen in
der Datenbank und dem Web Interface.

Das Ziel dieser Arbeit ist es herauszufinden, ob dieser Komponenten-basierte
Ansatz mit den Technologien, welche auf dem Institut für Genomik und
Bioinformatik Verwendung finden, vereinbart werden kann. Die zur Entwick-
lung von Web Applikationen auf dem Institut verwendeten Technologien sind
u.a. AndroMDA, Struts, J2EE, Spring, Hibernate und Tapestry.

Die mit dem Java Plugin Framework (JPF) erstellte Emersion Plattform er-
möglicht eine einfache Integration von Komponenten in ein Web-Applikations-
System. Deshalb wurde diese Technologie für die Erstellung von Komponenten-
basierten Web Applikationen gewählt. Damit diese Plattform in den JBoss
Application Server integriert werden konnte, musste diese modifiziert werden.
Anschließend wurde getestet, ob kleine Applikationen, welche die Technolo-
gien des Instituts verwenden, mit Hilfe der modifizierten Emersion Plattform,
zu einer größeren Web Applikation zusammengesetzt werden können.

Stichwörter: Komponenten-basierte Software Entwicklung, JPF, Emersion

1

Abstract

English

An increasing number of web applications is developed for the research in life
sciences. These web applications which support the researcher in manage-
ment and analysis of data often contain parts which can be found in other
web applications in a similar form. To save time and development effort,
existing components of other web applications could be reused when a new
application is developed. A module which is used for the composition of a
new application should consist of the business logic, the database table defi-
nitions and the web interface.

The goal of the thesis is to assess the feasibility of this component-based
approach in relation to the technologies which are used at the Institute for
Genomics and Bioinformatics e.g. AndroMDA, Struts, J2EE, Spring, Hiber-
nate and Tapestry.

The Emersion platform based on the Java Plugin Framework (JPF) provides
a simple mechanism for the integration of components into a web application
system. Therefore it was chosen as the technology for building component-
based web applications. The platform had to be modified so that it could
be integrated into the JBoss Application Server. Then it was tested whether
small applications using the institute’s technologies could be composed to a
larger web application with the help of the modified Emersion platform.

Keywords: Component-based Software Development, JPF, Emersion

2

Contents

List Of Figures 6

Glossary 7

1 Introduction 10
1.1 Objectives . 11

2 Background 12
2.1 Component-based Software Development (CBSD) 12

2.1.1 Components . 13
2.1.2 Component-based Software Development 14

Reuse . 15
Conceptual Reuse 16
Program Reuse 17
Reuse of Components 17
Black Box Reuse vs. White Box Reuse 19

Extensibility . 20
Extensibility Requirements 20
White Box Extensibility 20
Gray Box Extensibility 21
Black Box Extensibility 22

2.1.3 Component Technologies 22
CORBA . 23
COM . 23
Java Beans and Enterprise Java Beans 24

2.1.4 Service-Oriented Architecture (SOA) 24
2.2 Spring OSGi . 25
2.3 Enterprise Service Bus Architecture 28
2.4 Java Plugin Framework (JPF) 30

2.4.1 The Main Features of JPF 30
2.4.2 Emersion . 31

3

3 Methods 32
3.1 JPF . 32

3.1.1 Plugin Manifest . 32
3.1.2 The JPF System . 33

Plugin Registry . 33
Plugin Manager . 33
Plugin Class Loader 34

3.1.3 Tools . 35
3.1.4 Boot Library . 36

3.2 Emersion . 36
3.2.1 Architecture of Emersion 36

3.3 JBoss Application Server . 38
3.3.1 JBoss Architecture . 38
3.3.2 JBoss Features . 39

Security . 39
EJB (Enterprise Java Beans) Container 39
Hibernate Integration 40
JNDI Naming Service 40
Transactions . 40
Clustering . 41
JBoss Cache . 41

3.3.3 JBoss Configuration 41
3.3.4 Deployers . 42
3.3.5 JBoss ClassLoading . 42

Scoped Repositories . 44
Advantages and Disadvantages 46
Classloading and Deployers 46

3.3.6 Embedded JBoss . 46
3.4 AndroMDA . 47
3.5 Hibernate . 48

4 Results 49
4.1 Research . 49
4.2 Embedding JBoss into Emersion 50
4.3 Embedding a JPF Application into JBoss 52

4.3.1 JPF PluginClassLoader 52
4.3.2 Integration of JPF into JBoss AS 54

The Folder and File Structure of the JPF Application . 54
The ServletContextListener 55

4.3.3 The Architecture of the JPF Application 55
4.3.4 The Core Plugin . 55

4

Plugin.xml . 56
CorePlugin.java . 58

4.3.5 Validation of the Approach 59
Hibernate . 59
AndroMDA and J2EE 60

5 Discussion 62
5.1 Technologies for the Development of

Component-based Web Applications 62
Spring OSGi . 62
Enterprise Service Bus 62
The Emersion platform 63

5.2 Assessment of the collaboration of JPF and Emerision with
Web Technologies . 63

5.3 Outlook . 64

6 Appendix 65
6.1 ESB Implementations . 65

6.1.1 Open ESB . 65
6.1.2 JBoss ESB . 66

JBoss ESB Configuration 68
6.2 JPF Plugin Manifest . 69

<plugin> . 69
<requires> . 69
<runtime> . 70
<extension point> . 70
<extension> . 71
<plugin fragment> . 71
<doc> . 72

5

List of Figures

2.1 The OSGi Architecture . 27
2.2 The ESB Architecture . 29

3.1 Java Plugin Framework . 33
3.2 The Emersion Architecture . 37
3.3 The JBoss Architecture . 39
3.4 JBoss ClassLoading . 43
3.5 JBoss ClassLoading with a Scoped Repository 45

4.1 JBoss embeddded in Emersion 51
4.2 Structure of Emersion.war . 54
4.3 Architecture of the modified Emersion Platform 56
4.4 Hibernate Example Application 60
4.5 J2EE Sample Application . 61

6

Glossary

AOP Aspect Oriented Programming is a programming technique which al-
lows the description of software issues, like logging, which cut across
the software system so that the source code can be kept clear of these
issues.

API Application Programming Interface describes the methods and vari-
ables through which a object can be accessed.

CBSD Component-based Software Development makes it possible to de-
velop a software system by assembling components.

CBWE Component-based Web Engineering enables to build a web appli-
cation by the composition of components.

COM Component Object Model is a programming model which defines the
way objects can interact within an application or between applications.

CORBA Common Object Request Broker Architecture makes it possible
that applications which are written in different languages and which
are located on different computers can work together.

COTS Commercial-off-the-Shelf Components are software components that
can be bought from the vendor who produces them in serial-production.

DCOM Distributed Component Object Model is a protocol that enables
program components to communicate via a network.

DNS Domain Name Service resolves Internet domain names into IP num-
bers.

DS Declarative Services are binded and unbinded to an application via in-
jection.

7

EAR Enterprise Application Archive is a Java J2EE file format for packing
modules like WAR archives into a single archive in order to enable the
simultaneous deployment of the modules in an application server.

EJB Enterprise Java Bean is server-side component that encapsulates busi-
ness logic for modular development of enterprise applications.

ESB Enterprise Service Bus is a communication infrastructure for applica-
tions which follow the SOA principle.

GUI Graphical User Interface enables the interaction of users with the ap-
plication through graphical devices.

HAR Hibernate Archive is a file format used for packing Hibernate classes
and Hibernate mapping files.

IDL Interface Definition Language is a language that is used to describe the
interface of a software component.

J2EE Java 2 Enterprise Edition is a programming platform for developing
and running distributed multi-tier Java applications.

JAAS Java Authorization and Authentication Service is a Java based secu-
rity framework.

JAR Java Archive is ZIP file type which contains compiled Java classes and
the metadata associated with these classes.

JMS Java Messaging Service is an API with methods that allow Java ap-
plication components to create, send, receive, and read messages.

JMX Java Management Extensions provide tools for the management and
monitoring of Java applications, system objects, devices and service
oriented networks.

JNDI Java Naming and Directory Interface is an API which enables clients
to lookup and discover objects and data via their name.

JPF Java Plugin Framework is a framework for the development of component-
based Java applications.

JSP Java Server Pages is a technology which makes it possible that Java
code fragments can be embedded in simple HTML code.

JVM Java Virtual Machine is the runtime environment in which Java code
is executed.

8

LDAP Lightweight Directory Access Protocol is a protocol to access direc-
tory listings.

MDA Model Driven Architecture disconnects the business and application
logic of an application from the underlying platform technology.

MDR Metadata Repository is a database containing metadata.

MOM Message Oriented Middleware is a software which connects applica-
tions based on asynchronous messsage exchange.

ORM Object-relational Mapping is the conversion of objects into entries of
relational databases and vice versa.

OSGi Open Services Gateway initiative technology offers a component-based,
service-oriented environment for the development of applications.

POJO Plain Old Java Object is a simple Java object.

RMI Remote Method Invocation enables Java objects to invoke methods on
objects which are located in another JVM.

SAR Service Archive is a JBoss specific JAR file type used to pack services
to ensure that these services are started in an early phase of the server
start-up process.

SOA Service-Oriented Architecture is a set of services which are able to
communicate with each other.

TCP/IP Transfer Control Protocol/Internet Protocol is a collection of pro-
tocols which are responsible for the data transfer in the Internet.

UCL Unified Class Loader is a JBoss specific classloader which inherits the
URLClassLoader.

UML Unified Modeling Language is a standardized language for the mod-
eling of objects.

WAR Web Application Archive is a JAR file type which contains web mod-
ules.

XML Extensible Markup Language is an open standard of the World Wide
Web Consortium (W3C) designed as a data format for structured doc-
ument interchange on the web.

9

Chapter 1

Introduction

An increasing number of web applications is developed for the research in life
sciences. These web applications support the researcher in management and
analysis of data. They often contain parts which can be found in other web
applications in a similar form.

For instance these applications usually have a ”User Management” part
which handles the user data, grants access permissions and controls the au-
thentication mechanism. Often web applications have a ”Publications” part
to manage documents like papers or theses with contents related to the ap-
plication’s domain. Additionally there are often modules like ”Sample prepa-
ration”or ”Sample description”which allow the user to process data obtained
by biological experiments via a web application.

Usually such modules are developed from the scratch for each new appli-
cation. This is bad practice because the developer cannot focus her attention
on the actual function of the application but has to spend time and effort on
implementing parts of applications that have been implemented before.

To save time and development effort, existing parts of other web ap-
plications could be reused when a new application is developed. Existing
components or modules which cover one of the common areas and newly
developed modules could be combined to a new application.

A module which is used for the composition of a new application should
consist of the business logic, the database table definitions and the web in-
terface. It should be possible to integrate all those three parts of the module
unmodified into the new application just like a library is integrated into con-
ventional applications.

A library integrated into a conventional application contains only classes
that can be used by the application whereas in the component-based ap-
proach, a module also consists of database tables and the web interface.
When a module is integrated into an application, the integration of the web

10

interface or the definition of relationships between database tables of different
plugins may cause problems.

1.1 Objectives

The goal of the thesis is to assess the feasibility of this component-based ap-
proach in relation to the technologies which are used at the Institute for Ge-
nomics and Bioinformatics. These technologies include AndroMDA, Struts,
J2EE, Spring, Hibernate and Tapestry.

The specific goals of this thesis are:

1. Literature and the Internet should be searched a suitable technology
to build a web application by composing existing modules with newly
developed ones.

2. The technology which was found during the research phase should be
tested whether it can interoperate with the institute’s technologies men-
tioned above.

11

Chapter 2

Background

This chapter provides an overview of component-based software development.
Definitions of components are given and the advantages and disadvantages
of component-based software development are listed. Moreover component
technologies are introduced briefly. The last part of the chapter deals with
advanced technologies to build component-based web applications.

2.1 Component-based Software Development

(CBSD)

Gaedke [1] gives us a simple, yet significant definition of component-based
software development:

”CBSD aims at assembling large software systems from previously
developed components (which in turn can be constructed from
other components).”

component-based software development has been an issue in software engi-
neering since this discipline was first introduced at the first NATO Software
Engineering Conference in Garmisch Partenkirchen in Germany in 1968.
CBSD was an approach to overcome the software crisis. Krueger [2] explains
the software crisis as

”the problem of building large, reliable software systems in a re-
liable, cost-effective way”.

In his white paper, which was also presented at the NATO Software Engi-
neering Conference, McIlroy [3] states that the software industry, which at

12

that time was less industrialized than the hardware branch, would benefit
from a software components sub-industry.
According to his paper such a software components sub-industry would en-
sure that a developer gets standard software components which fit her needs
concerning performance, precision etc.
Those components should have a high quality and robustness. Further they
should be built in such a way that they go together with other components.
Thus relieving developers of larger systems of the need to care about how
the components work and enable them to concentrate on their real tasks.
As areas for reusable components McIlroy suggested among others, text pro-
cessing, two and three dimensional geometry and storage management.

Years later the Internet entered the computing world and though the world
wide web was originally a medium for the distribution of information in a
document-centric form, with the development of web technologies software
development for the Internet became a huge branch of the software engineer-
ing discipline. Of course component-based software development also became
an issue for developers of web applications. Gaedke defines Component-Based
Web Engineering (CBWE) [1] as

”the cost-effective production of (high quality) web applications
using a defined process that includes systematic reuse of compo-
nents and domain knowledge.”

2.1.1 Components

The term ”software component” is not clearly defined. Szyperski gives us two
definitions [4]:

”Software components are binary units of independent produc-
tion, acquisition and deployment that interact to form a func-
tioning system.”

and

”A software component is a unit of composition with contractu-
ally specified interfaces and context dependencies only. A soft-
ware component can be deployed separately and is subject to
composition by third parties.”

13

Usually a component has three attributes [5]:

• a component is an element of a system that is nearly independent and
replaceable with a non-trivial, encapsulated functionality

• a component accomplishes its function in the context of an accurately
defined architecture

• documented and well-defined interfaces are used to access a component.

Generally speaking, there are two types of components. Components which
were explicitly developed to be reused and components which were not ex-
plicitly developed for reuse, for instance complete, stand-alone applications,
but which are reused nevertheless.
The first type can be divided into two subtypes: Commercial-off-the-Shelf
(COTS) components which are produced commercially by a third-party ven-
dor. They can be bought ”off the shelf” from this vendor and then integrated
into a system without any modification.
The second subtype are components whose interfaces can be adjusted to
existing systems or other components.
Components can be fine-grained as well as coarse-grained. Fine-grained com-
ponents may be visual elements such as a button or a label whereas coarse-
grained components can represent entire applications [6].
When a component is too small or too trivial, its benefits may not be worth
the management costs of applying component-based design. On contrary
when the component is too large or too complex it is difficult to maintain
high quality [7].

2.1.2 Component-based Software Development

Graef’s [8] definition of component-based software development:

”A fundamental requirement for the automatic adaption of appli-
cations in a flexible and evolution oriented way is the availability
of all necessary functionality and features as independent building
blocks or components.”

With component-based development it is possible to divide large and complex
software systems into smaller, less complex modules. Since these modules
have an encapsulated function they can be decoupled from each other and
thus be implemented in parallel by different developers, regardless of location,
independently of each other’s work. Thus development time is reduced.

14

Moreover component-based technology promises higher quality because the
specific components can be tested individually with unit tests and the com-
ponent assembly has to be tested as well with integration tests [9].
However in general the testing effort is reduced because of the unit tests of
each component.
Another advantage is that software systems which consist of several com-
ponents are more flexible than monolithic software systems. If a software
system has to fulfill new requirements which were not anticipated, it is eas-
ier to recompose the components than to modify a monolithic system [10].
Component compositions are often easier to maintain because each compo-
nent can be maintained independently.
Developers of component-based software can focus more on the specific con-
text of the application. They do not need to worry how and whether the
components work because usually the components themselves have been de-
veloped by experts. Thus the developers can concentrate on more complex
requirements related to the specific field of the application [11].
Two of the main reasons why developers write component-based applications
are the extensibility and the reusability.

Reuse

Frakes’ definition of software reuse [12]:

”Software reuse is the use of existing software or software knowl-
edge to construct new software.”

For Gaedke [1] the main target of component-based web development is the
cost-effective, systematic reuse of software components. Software reuse is
desirable because many systems are not unique, share common elements and
differ in confined areas only.
Although software systems tend to become bigger and more complex, cus-
tomers expect low development costs, less development time, and high relia-
bility.
Software reuse helps to achieve these goals. It allows efficient software devel-
opment with improved productivity and quality.
The reliability is increased because components which have been tested thor-
oughly and worked well for one system may be reused in another system.
This leads to a higher quality of the composed application [11].
Instead of developing a component from the scratch, an already existing el-
ement with the same functionality can be used and thus time is saved. This
also accelerates development of new software. Due to reuse less code has to

15

be written. The saved time and effort can be used to improve other aspects
of the software such as robustness and correctness [13].

But there are some drawbacks developers have to face when reusing soft-
ware. Very often it is difficult to find and to select the right component
with the desired functionality. Higher maintenance costs may occur and the
module may become incompatible with new technologies.
The software may be bloated unnecessarily because single components can
have functions which are not used by the composed system.
Software reuse is often made difficult due to insufficient documentation or
bad programming style. Furthermore abstractions for large and complex
software components are usually very complex. Developers who want to
reuse this components either have to know the abstractions a priori or they
must invest time to study the abstraction [14].
Sophie Ramel [15] classifies the types of reuse into two categories: conceptual
reuse, which is a reuse of ideas, and program reuse.

• Conceptual reuse

– Reuse of models

– Reuse of architectures

• Program reuse

– Reuse of frameworks

– Reuse of code

– Reuse of components

Conceptual Reuse This type of reuse is also called design reuse. There
are three main reasons that speak for design reuse. Since one of the earliest
phases of software development is the design of the system, many errors that
affect the whole development process can be eliminated beforehand in this
early phase. Moreover, the system may be easier to understand and thus
easier to develop and to maintain if a familiar design is reused.
Due to reuse of design code reuse is often supported because code that is
used for an application with a certain design may also be useful for another
application with the same design [16].

An example for reuse of models are so called ”design patterns”. In pro-
gramming, especially in object-oriented programming, there are design tasks
which occur very often and thus have to be implemented very often. A design

16

pattern describes a very basic solution to such a recurring problem. A core
solution can be adapted to varying forms of the problem. It may be used over
and over again as long as the core problem corresponds to the description of
the design pattern [17].
The main advantage of design patterns is they provide solutions which have
been developed and permanently improved by many experienced developers
over a larger period of time. This means that the solution has been optimized
and is definitely not the solution one would come up with when looking at
the problem for the very first time.

Reuse of architectures is the reuse of software at the architectural level. Ar-
chitecture reuse can be realized with Model Driven Architecture (MDA).
The developer can define an architecture of an application which may be
reused even on other platforms. The implementation is generated automat-
ically from the application model [14]. An example for an MDA framework
is AndroMDA which will be presented in Section 3.4.

Program Reuse According to Ramel [15], a framework provides structures
which a developer may reuse in her programs. These structures provide cer-
tain functionalities like building a web page or the management of database
access. An advantage is that different functionalities are combined in a single
framework.
A framework provides standard interfaces and additional configuration files.
Examples for frameworks used in web based applications are Spring and
Apache Struts.

Code reuse is what every developer does from time to time: She copies a
fragment of her previously written code, be it a few lines or a whole class, to
insert it into her own code. The inserted code, usually just a small amount,
is often modified to suit the needs of the new program. With this technique
the developer often reuses her own code and less frequently the code of an-
other developer. This type of reuse is generally not recommended because it
is complicated to transfer changes in the original code to the inserted code
of the new program and vice versa.

Reuse of Components New software systems may be composed by reusing
already existing software components.
Krueger [2] observes that a software reuse technique is only effective when
reusing the components is easier than writing new components.
That means that a suitable component has to be found quickly. Therefore

17

components may be stored in repositories, so called component catalogues,
with detailed descriptions of what the component does and sophisticated
search functions. Thus enabling easy and fast finding of components which
fit the developer’s needs. Additionally it has to be just as easy and fast to
integrate the component into an existing system.
According to Monroe [16] the reuse of implementation-level code can enhance
the economics of software development. However, there are limitations to
code reuse. For instance it is not always clear under which circumstances (e.g.
expected interaction protocol, scheduling constraints, etc.) the component is
intended to work.
In order to invite reuse, a component must be well-tested, efficient and well-
documented. Moreover it should be reusable in different contexts. A compo-
nent’s quality regarding software reuse can be determined from the following
characteristics [11]:

• Portability: the ease of adaption to a new system and the ease of
installation in a new system.

• Applicability: the controllability and understandability of a compo-
nent as well as the ease of learning of a component.

• Efficiency regarding space, time and resources.

• Functionality: the adequacy, interoperability and accuracy of the
component’s functions.

• Reliability: the error tolerance, error frequency and traceability of
errors in a component.

• Maintainability: the changeability, stability, testability of a compo-
nent and up to which extend it is possible to analyze the component.

Another indicator of the quality of the component may be the reuse frequency.
The number of applications in which the component is used is a reliable sign
of its usefulness.
There are four steps to be accomplished until a software component can be
successfully reused [2]:

• Abstraction
Usually software components cannot be reused exactly the same way
as they were used in another system. Thus an abstraction that removes
details that were only necessary for a certain system and that empha-
sizes on important information is necessary to reuse a component in a
variety of contexts.

18

• Selection
Software developers have to locate, compare and select reusable soft-
ware components.

• Specialization
The abstract component is specialized via parameters, transformations,
constraints or any other kind of refinement to meet the requirements
of the new application.

• Integration
The components are put together forming a new, complete software
system. The integration is done via component technologies, module
interconnection languages or by calling functions or methods of the
component. Therefore the API (Application Programming Interface)
of the component can be used directly or a standard API which the
component implements may be used.

There are often obstacles which obstruct the composition of compo-
nents. Integration is difficult if the vocabulary that is used in the
component is different than the vocabulary used in the application. To
deal with that problem ontologies may be used.

It can be difficult to integrate the component into the business pro-
cess of the whole application. Sometimes even the business process
has to be changed so that the component fits. Moreover incompatible
technologies can cause severe problems.

When the architectures of the component and the application are too
different it is extremely difficult to integrate the component into the
application [15].

Black Box Reuse vs. White Box Reuse Black box reuse [15] means
that the developer who assembles the components has no knowledge about
how the component is working internally. To be able to add such a component
to a software system and thus to reuse its implementation, the component
needs to have well-documented interfaces.
Commercial-off-the shelf components are examples for black box components.
Unfortunately COTS components often do not follow standard interfaces
which makes it very difficult to integrate them into an application.

The white box approach denotes that the developer knows how the com-
ponent works internally. The programmer has access to the source code and
its methods and functions. If they do not suit her needs the developer may

19

modify them. The disadvantage of being able to modify the component is
the modification makes it difficult to update or maintain the component.

Extensibility

An application that is component-based is usually easier to extend than a
monolithic piece of software. Extensibility is very important because an
application is never really finished. There are always improvements to make
and new features to implement. Software can be modified more easily if it is
designed to be extensible.
Building a new software system is less effort if the base system is extensible
[13]. Extensibility enables software developers to develop variants of a system
by taking a base system, which shares a common structure and functionality
with other systems, and equipping this base system with possibly different
components.

Extensibility Requirements There are certain prerequisites which make
construction, deployment and evolution of components of an extensible sys-
tem easier.

• To prepare the system and components for programming in the large,
the mechanism for the composition and the evolution of the components
have to scale well.

• As little as possible adaption code should be needed when a component
is reused in a different context.

• A component should be extensible even if not all potential future ex-
tensions are known.

• The coexistence of different versions of a component is required and
can be achieved through a versioning mechanism.

Zenger [13] differentiates between three extensibility mechanisms: white box
extensibility, gray box extensibility and black box extensibility.

White Box Extensibility The extension of the software system takes
place through modification or addition to the source code. It is the most
flexible and least restrictive kind of extensibility. White box extensibility
can be classified into two types: open box extensibility and glass box exten-
sibility.

20

To apply open box extensibility the developer must have access to the source
code because the modifications are directly inserted into the original source
code.
Changing the source code, particularly if the code was written by someone
else and if the code and the functions of the system is not well-understood,
is prone to errors and exhausting.
Open box extensibility is usually applied when a development team is fixing
bugs, refactoring internal code or producing the next version of its own soft-
ware system. Open box extensibility is also often used when programmers
try to derive a variation of an existing piece of open source software.
They then copy the source code and apply the changes to the copied code.
This way of extending software simplifies the development of a new member
of a software family but it makes maintenance more difficult. For instance if
code in the original software is modified, e.g. a bug is fixed, then of course
it is desirable that this modification, which leads to an improved system, is
also applied to the extended system.
Glass box extensibility is applied when is the source code is available and the
developer can study the code.
Unlike in open box extensibility in glass box extensibility the developer does
not modify the source code. She separates her modifications from the original
system so that the original system is not affected. Since the extensions are
well-separated from the original system both the extensions and the original
system are easier to understand and maintain. It is also possible to combine
modified versions of the original system with extensions that were originally
developed for the unmodified original system.
Object-oriented frameworks are an example of glass box extensibility.

Gray Box Extensibility The compromise between the white box ap-
proach and the black box approach is called gray box approach. Contrary to
the white box extensibility, in this approach the source code is not available
but the binary of the code is available.
Nevertheless a system can be extended in a similar way to the glass box
approach. An abstract documentation of the system’s interface needs to be
provided. Of course this is not a simple interface but a specialization interface
which

”lists all the abstractions that are available for refinement and
specifies how extensions interact with the original system [13].”

As a mixture of the white box and black box extensibility the source code is
not fully revealed nonetheless details about the implementation of the original
system and the extensions are provided.

21

Black Box Extensibility In the black box approach the software is com-
pletely encapsulated and the implementation details are hidden. The de-
veloper has no access to internal details of the system’s source code or the
architecture of the system. Deployment and extension of the system is pos-
sible only through the specification of the system’s interface.
The mechanism which allows extension is directly implemented in the system,
respectively the mechanism is part of the design. The design of such an
extensibility mechanism requires that all imaginable extension scenarios are
taken into consideration. Since it is often impossible to consider all possible
future scenarios this extensibility type is more limited than the white box
extensibility.
An advantage of black box extensibility is the ease of extending such a system
because it is not necessary to know internal details of the application. System
configuration applications or application specific scripting languages are used
to extend such a black box system. When it comes to object-oriented frame-
works, interfaces of components are used to support the black box approach.
Via object composition these components can then be added to the frame-
work. Black box extensibility is usually applied when a development team
develops proprietary components or frameworks whose source code must not
be made public and when additionally other developers nevertheless should
have the possibility to customize the system or to extend the functionality
of the system.

2.1.3 Component Technologies

One of the first approaches to realize component-based programming was
object-oriented programming. A complex application is divided into smaller
parts, the objects. Object-oriented programming supports reuse. For in-
stance classes may be stored in class libraries (reuse libraries) [10].

But object-oriented programming could not satisfy the programmer’s needs
completely because a single class often is not as useful and the complex rela-
tionships between classes make it impossible to develop and test the objects
independently of each other [18].
An advanced approach of component-based software development are com-
ponent technologies which are based on object-oriented programming. Com-
ponent technologies are technical utilities (frameworks, middleware, archi-
tectures, etc.) that were developed to improve reuse [14]. Examples for
component technologies are:

22

CORBA

CORBA is short for Common Object Request Broker Architecture and was
initially released in 1991. It is an open standard for application interoper-
ability.
CORBA manages component interoperability. Due to CORBA, applications
can communicate with each other across different programming languages,
implementations, locations and platforms.
CORBA is a so called middleware or integration software that can be inte-
grated with other technologies like J2EE (Java 2 Enterprise Edition) or COM
(Component Object Model).
In the CORBA specification of 2004 [19] it is stated that

”the object request broker is responsible for all of the mechanisms
required to find the object implementation for the request, to
prepare the object implementation to receive the request and to
communicate the data making up the request.”

The developer defines the interface of those classes that want to make their
methods available for remote access with an Interface Definition Language
(IDL).
An IDL compiler creates classes which do not contain any implementation.
From these classes the developer can then derive her own classes and im-
plement them. When another application wants to access an object, its
developer gets the IDL interface, the IDL compiler creates the classes in the
adequate programming language and the programmer may make a remote
method call on one of the objects of the other application. That is the client
can send a request containing an operation, a target object, and parameters
which can be used to pass data to the target object. The name of the method
to be invoked and the parameters of the request are stored in a binary buffer
and the content of the buffer is sent to the server process which owns the
target object [20].

COM

Microsoft’s Component Object Model (COM) describes how the components
interact with each other. COM depends on the windows platform but is
language independent. According to the COM specifications [21]

”COM is used by developers to create re-usable software compo-
nents, link components together to build applications, and take
advantage of Windows services.”

23

COM is a binary standard which facilitates reuse of written code. A COM
component has to have a well-defined interface which can be used to apply
the functions of the component.
The interface is basically a pointer to a table with all the functions a COM
component provides. The COM technologies comprise COM, COM+, DCOM,
and ActiveX controls.
Today a lot of parts of the COM platform have been replaced by the Microsoft
.NET initiative [4].

Java Beans and Enterprise Java Beans

In 1996 Sun Microsystems presented its answer to the other component tech-
nologies: the Java Beans. They support the composition of an application
out of smaller components. It is a platform neutral component architecture
for the Java 2 Platform. Sun’s web site [22] gives the following definition:

”Components (Java Beans) are reusable software programs that
you can develop and assemble easily to create sophisticated ap-
plications.”

Instances of such beans may be assembled at design time by a tool, for
example an application builder and the composition then works like a single
application at runtime [4].
A Java Bean may contain many objects but it can be treated like a single
object. Java Beans are intended for reusable client-side component develop-
ment. A Java Bean can be a simple GUI element, e.g. a button, a more
complex visual component or even an element without a visual appearance
of its own at all [23].
Enterprise Java Beans (EJBs) are intended for reusable server-side compo-
nent development. They encapsulate an application’s database access and
business logic.

2.1.4 Service-Oriented Architecture (SOA)

Service-Oriented Architecture is an evolution of component-based develop-
ment and its technologies like COM, CORBA and J2EE [24].
The Service-Oriented Architecture (SOA) is described by Ortiz [25]:

”An SOA enables flexible connectivity and communication among
applications by representing each as a service with an interface
that lets them communicate readily with each other.”

24

A service in this context has an explicit, implementation independent inter-
face and encapsulates a reusable business function. With SOA it is possible
to integrate existing systems, applications and users in a flexible architecture
that can be easily adjusted to changing requirements. Three roles determine
the service-oriented architecture:

• Service Provider provides a description of the service and publishes the
service in the Service Broker so that it is available to other services

• Service Requestor searches for a service in the service descriptions of
the Service Broker and connects to the service when an appropriate
service has been found

• Service Broker contains a registry with service descriptions and with
the help of the registry it links the service requestor to the service
provider.

The benefits of the use of a service-oriented architecture include interoperabil-
ity, efficiency and standardization. SOA supports interoperability because it
enables applications to share data and functionality even if they run on dif-
ferent systems. Using a Service Oriented Architecture is efficient because
with SOA existing applications may be reused [26].

Web Services are a concrete implementation of the SOA principles. Web
Services are software components which run on different servers and which
are loosely coupled to form a single application [27].
They make their functions available to other applications or services via
application interfaces and an industry standard network. There are other
ways to implement SOA, e.g. by using CORBA or COM Technologies.

2.2 Spring OSGi

The Spring OSGi framework provides a way of building component-based
applications following the Service Oriented Architecture.
It is based on the Spring Application Framework, an open source, layered
Java / J2EE application framework [28].
The main objective of Spring is to provide an effective way of managing the
business objects of an application. It intends to facilitate the use of J2EE
and provides a consistent configuration handling throughout applications.
The Spring Framework makes unit testing of applications easy. Moreover it
allows the user to build applications using Plain Old Java Objects (POJOs)

25

instead of using exclusively EJBs [29, 30].

Spring OSGi makes it possible to develop Spring applications which run in
an OSGi framework. OSGi[31] stands for Open Services Gateway initiative
and is a technology which was developed by the OSGi Alliance, which is a
consortium of technology innovators. It is a dynamic module system for Java
and provides

”a service-oriented, component-based environment for developers
and offers standardized ways to manage the software life cycle”
[32].

The OSGi technology makes it possible to compose large applications from
small, reusable and collaborative components [31].
This technology in cooperation with Spring facilitates component-based de-
velopment and allows a dynamic service model. It provides a simple pro-
gramming model for developers of enterprise applications that want to benefit
from the features of the OSGi platform. Spring OSGi provides the following
advantages:

• Spring facilitates the splitting of application logic into modules.

• Several versions of a module can be deployed at the same time.

• Modules are able to automatically find and use services which other
components in the system provide.

• Modules can be dynamically deployed, updated and removed from the
running system.

• The Spring Framework is responsible for the instantiation, configu-
ration, composition and decoration of components within and across
modules.

In Spring OSGi the Spring-based application logic is packed as bundles. A
bundle contains one Spring application context and a Spring-based applica-
tion may consist of multiple bundles.
A bundle is by default completely protected. Classes within the bundle can
neither be accessed with reflection nor with classloading experiments. A bun-
dle is able to export packages containing Spring beans. Only these exported
beans are visible to other bundles. This visibility constraints help to avoid
unintended coupling between components and make independent develop-
ment of modules possible [33, 34]. A bundle also has to define on which

26

other bundles it depends [35]. A bundle can also export services e.g. logging
service, that are then available to other bundles. Additionally OSGi services
may be imported into bundles.

Figure 2.1: The OSGi Architecture [36]: An OSGi application consists of
bundles which can export and import packages and services.

An OSGi service is an object with a public interface and it may have a set
of queryable properties. Such a service is registered in the OSGi Service
Registry. The OSGi Service Registry contains all the services which should
be visible across the system. Bundles can dynamically register and unregister
their services in the Service Registry and may ask the Service Registry for
a service and use this service. The standard Spring proxy mechanism deals
with the dynamically added and removed services.
Applications which are developed with Spring OSGi need to find a way to
cope with dynamic services. The Declarative Services specification (DS) is a
mechanism to deal with the dynamic services. DS is a model which facilitates

27

writing OSGi services because it takes care of the registration of services and
the dependencies between services of an application [34].

The main goal of Spring OSGi is the development of enterprise applica-
tions and among those, the development of web applications. The Spring
OSGi developer team promises that in the future it will be possible to easily
implement and deploy Spring web applications in an underlying OSGi infra-
structure. Currently Spring OSGi is tested with web applications using the
Equinox Incubator OSGi provider because which is the only OSGi container
that supports web applications [32]. There are plans to extend this to other
web containers like Tomcat, WebSphere, WebLogic or any other application
server since an OSGi container can be embedded into another container [33].

2.3 Enterprise Service Bus Architecture

The Enterprise Service Bus Architecture provides an infrastructure for appli-
cations that are developed using the Service Oriented Architecture approach
described in Section 2.1.4.
Keen et al. [37] define the Enterprise Service Bus

”as providing a set of infrastructure capabilities, implemented by
middleware technology, that enable the integration of services in
a SOA.”

The Enterprise Service Bus is a concept for such an infrastructure. It allows
the developer to compose a heterogeneous application [37].
With ESB software, applications which run on different platforms, are written
in different programming languages, are using different programming models,
different data formats or programming interface can communicate through a
connectivity infrastructure.

To support the principles of SOA, the following integration paradigms must
be realized by the Enterprise Service in one infrastructure [37]:

• Service-oriented architectures: The communication between the mod-
ules is carried out through well-defined, explicit interfaces and uses
underlying message and event communication models.

• Message-driven architectures: The communication between the appli-
cations takes place via message exchange.

28

• Event-driven architectures: In order to communicate, the sender trig-
gers the message independently and the receiver processes the message
independently.

The ESB works in a similar way as a hardware bus. Data is sent along a
common pipe to which all the applications are connected.

Figure 2.2: The ESB Architecture [38]: Applications are connected to a com-
mon pipe through which the data is sent and which takes care of routing,
transformation etc.

First, the sending application tries to access the receiving application via
a locater and then it sends the message. The Enterprise Service Bus is re-
sponsible for transforming the data formats as well as for routing, acceptance
and processing of messages [25]. Transformations and routing are carried out
decentralized before the bus is given the messages to deliver them. The appli-
cations can communicate with each other through the exchange of messages
in a loosely coupled network. For this asynchronous messaging a Message
Oriented Middleware (MOM) like Java Messaging Service (JMS) is neces-
sary.
An ESB has to support Web Services, whose advantage is their interfaces
specified in a special XML dialect and are thus independent of platform and
programming language.

29

Moreover, an Enterprise Service Bus should be able to integrate systems
and applications that run on different geographical locations. Properties
of more advanced ESB implementations are security with encryption and
authentication, robustness, i.e. reliability, fault tolerance, business process
management, work flow, business rules and content based routing [39].
There are several advantages of ESB. It configures the services when ap-
plications are integrated in such a way that they can be reused whenever
necessary. Since the Enterprise Service Bus architecture enables a standard-
ized and automated way to handle the communication between applications,
it is easy to extend and compose existing services. The architecture of ESB
is decentralized, which means that extensions to a system may be added
whenever and wherever needed.
A disadvantage of the ESB that it usually takes some time to learn how to
use an ESB optimally. This means that a return on investment must not be
taken for granted for the first few projects.
Breitling [40] draws the conclusion that ESB is interesting for a whole enter-
prise but for smaller applications it is not reasonable to use such an infra-
structure.

Commercial vendors of ESB implementations are for instance IBM’s Web-
Sphere ESB [41], Oracle ESB [42] and BEA AquaLogic R© Service Bus [43].
There are also open source ESBs available, for instance Sun’s Open ESB or
JBoss ESB (see Section 6.1).

2.4 Java Plugin Framework (JPF)

The Java Plugin Framework enables a developer to implement component-
based applications. Unlike Spring OSGi and ESB, JPF is not based on Service
Oriented Architecture.
The Java Plugin Framework (JPF) [44] is an open source project which pro-
vides an environment for building component-based Java applications, which
uses a similar plugin framework approach as Eclipse 2.x [45].
With JPF any kind of Java application can be developed, be it a simple GUI
application, a command line tool or a J2EE application.

2.4.1 The Main Features of JPF

• JPF makes it possible to develop an application as a composition of
modules.

• An application developed with JPF is easily extendable.

30

• JPF facilitates the reuse of code. Code and resources may be shared
among different applications.

• It is possible to define dependencies between modules.

• JPF allows ”Hot Deployment”: plugins my be added to the JPF system
or removed from the JPF system during runtime.

• JPF provides an integrity check which tests the registered plugins for
consistency when JPF is started.

• There is no predefined structure for applications built with JPF. De-
velopers can organize their plugins as they want.

An application developed with JPF usually consists of several plugins. A
plugin has a name and a version identifier and contains code and resources.
It provides a well-defined import interface which declares all the plugins on
which this plugin depends on. It also provides a well-defined export interface
which declares which code and resources may be used by other plugins. Such
a plugin also has so called ”extension points”, which indicate where other
plugins may be plugged in.

2.4.2 Emersion

Emersion [46] is a platform based on the Java Plugin Framework. Its pur-
pose is to develop and deploy server-side applications and web sites. These
applications can be component-based. In order to be able to execute Java
Servlets and Java Server Pages, the Tomcat web container is embedded into
Emersion.

31

Chapter 3

Methods

JPF and the Emersion platform were chosen to assess the component-based
development approach of web applications. In order for these technologies to
be used at the institute they have to work with JBoss. To validate the ap-
proach, it was tested with AndroMDA and Hibernate. All these technologies
are explained in this chapter in more detail.

3.1 JPF

The following sections show how a module can be added to a JPF-based ap-
plication and which tools are provided by JPF. Moreover the most important
components of JPF are introduced.

3.1.1 Plugin Manifest

A plugin may consist of Java code and resources. Resources can be all types
of files, e.g. images, XML files, text files, etc. A plugin has an ID, a version
identifier, an import interface, an export interface and a interface where it
can be extended.
An application that is built with JPF is usually composed of several of those
plugins. To add a plugin to such an application it must be connected to an
extension point of an existing plugin. An extension point is a JPF feature
that makes an application extensible. A plugin can have zero, one or more
extension points, according to the architecture of the application. JPF is
responsible for automatically discovering and loading these plugins.
To make a plugin visible to the JPF system, a XML file called plugin manifest
has to be inserted into the plugin folder. The plugin manifest contains all
necessary information to enable JPF to make all the plugins work together

32

resulting in a consistent application for the user. The plugin manifest file is
described in more detail in Section 6.2.

3.1.2 The JPF System

Figure 3.1: Java Plugin Framework [44]: All the plugins are registered in the
plugin registry. The plugin manager locates the code of the plugins with the
help of the path resolver and then loads the code when the client requests it.

Three objects are the backbone of JPF: the plugin registry, the plugin man-
ager and the plugin class loader.

Plugin Registry

When the application is started, all the plugins that are discovered by JPF
are added to the plugin registry. This means the information provided by
the plugin manifest is stored in the plugin registry. Plugins may also be
registered or unregistered at runtime which is known as hot deployment.

Plugin Manager

”The plugin manager is the runtime system of the framework [44]”.
Usually only one instance of such a plugin manager exists in an application.
The most important task of the plugin manager is loading the plugin code
when the client requests it. If an entry class to the plugin is specified, the
manager also calls this class. Furthermore the plugin manager is responsible
for managing the dependencies between plugins.

33

Plugin Class Loader

The class loader used in JPF is a subclass of java.net.URLClassLoader.
The classloading mechanism of JPF is also known as scoped classloading.
This means for every plugin a custom classloader is created and all classes
and resources are loaded with this classloader. The main responsibility of the
plugin classloader is to add the code and resources belonging to the plugin,
which were specified in the manifest XML file, to the classpath. That is, all
files and folders declared in a <library> tag within the plugin manifest are
appended. One of the main characteristics of JBoss is the ability to specify
other plugins in the plugin manifest on which the current plugin depends.
The plugin can see the code and resources of those plugins. When the plugin
classloader is about to load a class that is in one of those imported plugins,
it delegates this work to the classloader of the package the class belongs to.
The classpath of the current plugin is extended to include the classpath of
the imported plugin. In fact, the current plugin does not need to import
any plugin which one of its other imported plugins or the imported plugins
of those plugins has already imported. The classloading will be delegated to
the classloader of the plugin which provides the requested code or resources.
To make this more clear, the developer of JPF gives the following explanation
[44]:

”Lets say a plugin PluginA introduces a classA (this class is in-
cluded in a plugin directory hierarchy described by a JPF plugin
manifest). Now you are developing another plugin, PluginB, and
add another class, classB, to this plugin. You want to reference
classA in your classB code, so you need to declare a plugin depen-
dency. You can do this by making an entry in the JPF manifest
of the plugin PluginB that says ”PluginB depends on PluginA”.
This is done in the prereqisites/imports section of the JPF man-
ifest. JPF handles finding and loading classA when it is first
called. The magic lies in the classloaders created by JPF. They
extend the classpath of PluginB so that it includes the classpath
of PluginA. So the developer doesn’t have to worry about finding
classes and can use the basic code that follows in classB:

No further work is necessary to make ClassA visible for ClassB
code.”

However at compile time it is necessary that ClassA is in the classpath of
ClassB.

34

1 import ClassA ;
2
3 public void ClassB (){
4
5 public ClassB () {
6 }
7
8 public stat ic void main (St r ing [] a rgs) {
9 ClassA clsA = new ClassA () ;

10 }
11 }

Listing 3.1: Even if ClassA is in another plugin than ClassB it can be simply
imported and used by ClassB

3.1.3 Tools

The JPF provides several tools that make the developer’s life easier.

• Integrity Check Tool:
This Ant [47] task checks whether the plugin and its manifest are con-
sistent. For instance, if all the files that are mentioned in the manifest
exist in the plugin.

• Documentation Tool:
In JavaDoc [48] manner, this tool automatically creates the documen-
tation of the plugins.

• Plugin Archive Tool
A plugin archive is a file in ZIP format which contains all packed plugins
and special descriptors. These descriptors enable the fast extraction of
meta data of plugins without unpacking the entire archive.

• Single File Plugin Tool This tool makes it possible to package every
plugin and every plugin fragment of a plugins collection into a single
ZIP archive file.

• Manifest Info Tool
The job of this tool is to read data from the plugin manifest and to add
this data to the properties of the application.

• Version Update Tool
With this tool, the version number and optionally the version name
will be increased if the plugin has been modified since the last time
this task was called.

35

3.1.4 Boot Library

To start a JPF-based application a boot procedure is necessary. The applica-
tion developer may write its own boot procedure where he has to implement
a few basics to enable JPF to run. A simpler and faster way is to use the
boot library written by the JPF developer and packed in jpf-boot.jar.
First the boot procedure loads the system properties and the application
configuration which is located in the boot.properties file. This properties
file allows to set several parameters of the JPF system. For instance, the
user may specify which implementations of the application initializer or the
error handler she wants to use.
If no special configuration is needed, the only parameter the developer has
to set is org.java.plugin.boot.applicationPlugin. This is the id of the
plugin that is used to start the modularized application. It is the entry point
to the application.
The next steps in the boot procedure is the creation of an instance of the
error handler and the configuration of the logging system.
Afterwards all plugins are gathered, the plugin manager is instantiated and
the integrity of the plugins is checked. Next, the application plugin which
is the entry point of the application is located and initialized. Then the
application is started.

3.2 Emersion

Emersion [46] is a Web Applications Integration Platform based on the Java
Plugin Framework. It is possible to deploy Java Server Pages applications or
Java Servlet application into Emersion as plugins. The Emersion platform
consists of several plugins. A plugin adds functionality or resources or both to
the system. The relations between plugins are declared through dependencies
which are described in XML files.

3.2.1 Architecture of Emersion

The core of the platform is the org.emersion.platform plugin. It is respon-
sible for the initialization and the start of the entire platform.
It has one extension point called PlatformApplication where the
org.emersion.platform plugin can be extended with the web server plugin
called org.emersion.platform.webserver.
The web server plugin is constructed as a Java Servlet and JSP container
which is implemented in a container-independent way.

36

Figure 3.2: The Emersion Architecture: The Platform Plugin is the core of
the Emersion platform. It is responsible for starting and initializing the entire
application. The Webserver Plugin is connected to the Platform plugin. Into
the Webserver plugin the Tomcat web server is plugged in as well as the web
applications. The wrapper plugins contain classes of e.g. Tomcat or Struts.
They are not plugged into another plugin but may be imported as dependencies
by plugins.

To achieve this, the WebServer extension point, the WebContext extension
point and the WebContextFragment extension point are inserted into the
org.emersion.platform.webserver plugin.
The implementations of Java Servlet and JSP containers can be plugged
into the WebServer extension point. In the version which is available for
download, Apache Tomcat is plugged into the WebServer extension point.
The web applications which are written by the developer can be plugged into
the WebContext extension point. Usually the web applications may be added
to the system without modifications.
The WebContextFragment extension point can be used to add plugin frag-
ments (see Section 6.2).
Due to this extension point resources of web applications may be split be-
tween different plugins. Embedded Tomcat is used as the Java Servlets and
JSP container.
Additionally there are so called ”wrapper plugins” which only contain the
libraries of e.g. Tomcat or Struts. In case a plugin needs to access the classes
of a wrapper plugin, the wrapper plugin has to be declared in the <import>

part of the plugin manifest.

37

3.3 JBoss Application Server

The JBoss Application Server (JBoss AS) is an open source J2EE platform
for the development and deployment of web applications, Java enterprise ap-
plications and portals [49]. It is part of the JBoss Enterprise Middleware
System (JEMS). JEMS is an extendable and scalable product suite with
completely integrated and tested middleware products including JBoss AS,
Apache Tomcat, JBoss Cache, Hibernate and JBoss Eclipse IDE [50].

Whereas a web server like Tomcat just sends the web pages of an application
to the client, the application server adds the business logic to the application.
The application server provides a container in which server-side applications
are deployed and run. It generates HTML code which is sent to the client.
It is also possible to link a database to the application server. Application
servers supporting J2EE enable communication with EJBs and WebServices.
In order to be able to display Java Servlets and JSPs the Tomcat web server
is embedded in JBoss. Other J2EE servers are IBM’s WebSphere and BEA’s
Weblogic [51].

3.3.1 JBoss Architecture

The main parts of the JBoss architecture are the JMX MBean server and
the MBeans which are pluggable component services. Services which are not
required may be removed and custom MBeans can be added to the system
[52].
A managed bean (MBean) is a Java object which implements an MBean in-
terface. The MBean of a resource provides information needed to control the
resource by the management application. The information can be attribute
values which are accessed through their name, operations and functions to
be invoked, notifications, events as well as the constructors for the MBean’s
Java class.
The MBeans are registered with the MBean server. The MBean server is
responsible for making the MBean’s management interface available for man-
agement applications. To register a MBean on the MBean server it must have
an unique name by which it is identified by the management applications.
In JBoss, the JMX MBean server is used as a micro-kernel. The JBoss
components are integrated into JBoss via registration in the MBean server.
That means the micro-kernel is just a framework and the components add
the functionality [53].
The JMX console or Java Management Console provides a live view of the
server and its MBeans. It offers information about the server and it is pos-

38

sible to change the server’s configuration in the JMX console [52]. This
includes memory consumption, the amount of free memory in the JVM and
the number of active threads of a JBoss instance [53].

3.3.2 JBoss Features

JBoss provides many services e.g. logging, security, object persistence, etc.
Some of them are discussed below.

Figure 3.3: The JBoss Architecture [51]: The services JBoss provides, like
the web server, security, persistence, etc. are registered with the microkernel
and can be used by the web applications deployed in JBoss.

Security

In JBoss it is possible to control user’s access to application and what oper-
ation those users may perform in the application. The Java Authorization
and Authentication Service (JAAS) provides an API for user authorization
and authentication [53].

EJB (Enterprise Java Beans) Container

The EJB container is responsible for managing a particular class of EJBs. In
JBoss, for each EJB type a container instance exists. The EJB Deployer is
in charge of the creation and initialization of the EJB containers.
When an EJB jar is deployed the EJB Deployer verifies the EJBs, creates
the container for each type of EJBs and initializes the container. To verify
the EJB it is checked that the required home and remote, local home and

39

local interfaces are available and that the objects in these interfaces have
the right types. The application, which starts all the containers, is started
and the EJBs are made available to the clients when the EJBs are deployed
successfully. In case the deployment of the EJB fails an exception is thrown
and the application is not started [53].

Hibernate Integration

Hibernate is an object persistence framework which is able to map Java
objects into tables of relational databases and vice versa. JBoss provides a
hibernate service which makes the Hibernate framework libraries available to
all applications which are running on the JBoss AS.
JBoss is able to manage Hibernate sessions by registering them as a MBeans.
This facilitates the configuration of Hibernate. The Hibernate classes and
the Hibernate mapping files can be packed separately in a HAR archive or
together with the web application in another archive [53].

JNDI Naming Service

JBoss uses the JNDI naming service. JNDI stands for Java Naming and
Directory Interface. The naming service is responsible for locating objects
and services in the application server. Moreover external clients use the
naming service to locate services in the server.
The Java Naming and Directory Interface is a standard API providing a single
interface for many naming services, e.g. DNS, LDAP, RMI registry, and file
systems. The API is split into two parts, the client API and the service
provider interface. With the client API, the naming services can be accessed.
On the other hand, the user can create a custom JNDI implementation for
naming services using the service provider interface [53].

Transactions

In the JBoss Application Server Guide [53] a transaction is described as

”a unit of work containing one or more operations involving one
or more shared resources”.

A JBoss transaction has four characteristics [53]:

• Atomicity means that it is not possible to perform a part of an trans-
action. When the whole transaction cannot be executed, then none of
the parts must be executed.

40

• Consistency means that the system must be in a stable condition
when the transaction has been accomplished.

• Isolation means that transactions must be independent of each other.
It must be impossible for a transaction to see the partial results of
another transaction until this transaction is completed.

• Durability means that as soon as the transaction is committed, its
results are made persistent. Thus even if the server should crash the
changes are not lost.

Enterprise Entity Beans transactions have those four attributes and due
to JBoss’ aspect-oriented approach POJO transactions also have those at-
tributes [51].

Clustering

Clustering means that an application can run on multiple servers at the same
time. With clustering the load is distributed across several cluster nodes. If
a server fails the application can still be accessed through other servers. To
improve an application’s performance simply additional cluster nodes have
to be added. In JBoss a cluster node is a JBoss server instance [53].

JBoss Cache

The main target of the JBoss Cache is to improve the performance of ap-
plications. Java objects that are frequently accessed are cached and thus
unnecessary database ac The JBoss Cache is distributed, transactional and
enables AOP(Aspect Oriented Programming). Business objects, so called
Entity Beans, are accessed with this cache.
The cache is implemented as an object tree. When an object is added to
a tree it is possible to add it to other trees in the cluster to enable the
replication of data across the borders of the process.
The cache is also responsible for the replication of HTTP sessions with Tom-
cat and the replication of JNDI. To improve the management of the AS and
its subsystems the JBoss cache is able to combine all JBoss caches to a single
cache [51].

3.3.3 JBoss Configuration

There are three predefined configurations of JBoss: ”minimal”, ”default” and
”all”.

41

As its name gives away, the ”minimal” configuration only provides the mini-
mal services which are needed to start JBoss. The logging services, a JNDI
server and an URL deployment scanner that searches for new deployments
are available. Tomcat is not included in this configuration.
The ”default” configuration contains all the services which are necessary for
the deployment of web applications. However there are no clustering services
available.
The ”all” configuration provides all the JBoss services. Moreover the devel-
oper may also add her own configuration
[52].

3.3.4 Deployers

JBoss scans regularly for new application deployments in the deploy folder
or any folder the developer specifies. When JBoss finds an application to be
deployed, the deployment request is sent to the MainDeployer. The Main-

Deployer checks whether there is a sub deployer that can handle the de-
ployment. When a sub deployer is found, the MainDeployer assigns the
deployment task to the sub deployer.
Examples for SubDeployers are

• the AbstractWebDeployer, which handles the deployment of web ap-
plication archives (WARs),

• the EARDeployer, which handles the deployment of enterprise applica-
tion archives (EARs),

• the EJBDeployer, which handles the deployment of Enterprise Bean
JARs,

• the JARDeployer, which handles the deployment of library JAR archives,

• the HARDeployer, which handles the deployment of hibernate archives,

• the SARDeployer,which handles the deployment of JBoss MBean ser-
vice archives, and (SARs) [53].

3.3.5 JBoss ClassLoading

The classloading architecture of JBoss enables easy sharing of classes over the
boundaries of deployment units with the help of shared classloading reposi-
tories. It also enables the deployment of applications and services while the
JBoss AS is running.

42

The most important classloader in JBoss is an extension of the URLClass-

Loader called UnifiedClassLoader3 (UCL). The parent for any UCL is a
NoAnnotationClassLoader which extends URLClassLoader.
When the server is started, a single instance of a NoAnnotationClassLoader,
is created, which is responsible for loading the classes in the libraries con-
tained in the <JBossHome>/lib/ folder.

Figure 3.4: JBoss ClassLoading [54]: When a UnifiedClassLoader wants
to load a class, first the cache of the UnifiedLoaderRepository associated
with the UnifiedClassLoader is searched for the class. If the class can not
be found there, the UnifiedClassLoader itself tries to load the class or del-
egates the classloading to its parents. If the class cannot be loaded, the other
UnifiedClassLoaders associated with the UnifiedLoaderRepository are
asked to load the class. If the class cannot be loaded by any of the Unified-

ClassLoaders in the Repository, an Exception is thrown.

The system classloader is the parent of the NoAnnotationClassLoader and
the parent of the system classloader is the bootstrap classloader [54].
Additionally there are classloading repositories, for instance the Unified-

LoaderRepository3, the BasicLoaderRepository and the Heirarchical-

LoaderRepository. Please note: HeirarchicalLoaderRepository is spelled
correctly. A loader repository usually contains several UnifiedClassLoaders

43

whereas a UnifiedClassLoader belongs to only one loader repository. The
UnifiedLoaderRepository is an MBean which has methods to display the
information of classes and packages. The JMX console can be used to get a
view of this MBean [53].
Several URLs which are used to load classes and resources can be asso-
ciated with a single UCL. The default configuration ensures that there is
only one UnifiedLoaderRepository3 that contains all the UnifiedClass-

Loaders. When an UnifiedClassLoader tries to load a class the following
tasks are performed:

1. The cache of the loader repository which is associated with the UCL is
searched for the class.

2. If the class cannot be found in the cache the UCL tries to load the class
by calling the URLClassLoader’s loadclass method. The URLs of the
UnifiedClassLoader and its parent class loader are searched for the
class. In case the class is found it is added to the cache of the loader
repository which belongs to the UnifiedClassLoader and returned.

3. If the UnifiedClassLoader or his parent cannot find the class then
the repository which is associated with the UnifiedClassLoader is
searched for other UCLs which might be able to load the class. It can
be quickly determined which UCL is capable of loading a class because
a mapping from package names with their classes and the UCLs exists.
This mapping is updated when a UCL is added to a repository.

The discovered UnifiedClassLoaders are capable of loading classes in
the order they have been added to the repository. If the class cannot
be found a ClassNotFoundException is thrown, otherwise the class is
simply returned.

Scoped Repositories

JBoss provides a flat classloading model. The classes which make up an ap-
plication can be used by other applications because the classloader that is
responsible for the classes is in the same repository as the classloader of the
other applications. When any of the other applications try to load a class it
may be found in the repository’s cache when it has been loaded before, or it
can be loaded by a suitable classloader in the repository.

The flat model can cause problems especially when a version conflict exists.
Then the classes have to be isolated from other deployments by so called
scoping.

44

In JBoss it is possible to create a loader repository for each deployed appli-
cation. Such a repository is a HeirarchicalLoaderRepository implemen-
tation. It is a child repository of the main UnifiedLoaderRepository that
cannot share classes. When a class is loaded, first the UnifiedClassLoader

instances of the HeirarchicalLoaderRepository are searched for the class
before the classloading task is delegated to the default UnifiedLoaderRepos-
itory3. This means that an application with a scoped repository can still
access the classes of the UCLs in the root repository [54][53].

 ei

ei

Figure 3.5: JBoss ClassLoading with a Scoped Repository [54]: When a Uni-

fiedClassLoader which is associated with a scoped repository (Heirarchi-
calLoaderRepository) wants to load a class, first the cache of the scoped
repository is searched for the class. If the class can not be found there, the
cache of the parent of the scoped repository, the UnifiedLoaderRepository,
is searched. If the class cannot be found there either, the UnifiedClass-

Loader itself tries to load the class. If the class cannot be loaded, the other
UnifiedClassLoaders associated with the scoped repository are asked to load
the class. If they are not able to load the class, the UnifiedClassLoaders
of the UnifiedLoaderRepository try to load the class. If the class cannot
be loaded by any of the UnifiedClassLoaders, an Exception is thrown.

45

Advantages and Disadvantages

Advantages

• It is possible to access classes across the boundaries of deployments.

• This model offers many possibilities for the future, e.g. dependency and
conflict detection and the partitioning of repositories into domains.

Disadvantages

• The developer has to be careful with packaging of applications because
if there a duplicate classes in a loader repository, ClassCastExceptions
or linkage errors may occur.

• When different applications use different versions of the same class,
this class needs to be isolated in a separate EAR or WAR for which a
HierarchicalLoaderRepository is created.

Classloading and Deployers

The UCL for a deployment is created by the main deployer. Only the topmost
deployment unit, e.g. an EAR, gets an UCL. The deployment units contained
in that EAR, for instance a WAR or a JAR, just add their classpaths to the
UnifiedClassLoader of the parent deployment unit, the EAR.
A WARDeployer only adds the WAR archive to the classpath of the Uni-
fiedClassLoader. The class loaders of the Servlet container loads the classes
from the WEB-INF/classes/ and WEB-INF/lib/ folders. Since the Unified-
ClassLoader of the WAR is the parent classloader of the Servlet container’s
class loaders, the classloaders of the servlet container delegates the loading of
the classes in WEB-INF/classes/ and WEB-INF/lib/ to the WAR UCL. The
classloaders of the web container are not included in the shared classloader
repository and thus cannot be seen by other components. In case this classes
need to be available to other applications as well, they have to be included
into a SAR or EJB deployment or into a JAR which is referenced through a
manifest classpath entry [53].

3.3.6 Embedded JBoss

The JBoss micro-container can also be used as a stand-alone micro-container
outside of JBoss and is called embedded JBoss [53].
Embedded JBoss was developed to be able to execute the JBoss kernel and
the JEMS services in a non-application server environment with a classloader

46

not controlled by JBoss. The goals of the embedded JBoss project is the
ability to run JBoss in a stand-alone Java application within JUnit tests in
a stand-alone Tomcat instance or in other application servers.
Embedded JBoss uses the new JBoss 5 kernel and supports JNDI, EJB 3.0,
JBoss Security, JBoss Messaging, JMX MBeans and JBoss TS.
In contrary to the JBoss AS it is not possible to deploy an application while
embedded JBoss is running. WAR and EAR packaging types are not sup-
ported, files can only be packed in JARs. The default JBoss Classloading
model with UnifiedClassLoaders and Repositories was removed. The em-
bedded version of JBoss does not generate classloaders. Only system class-
path and the context classloader are used for deployment and execution of
applications [55][56].

3.4 AndroMDA

Model Driven Architecture disconnects the business and application logic
of an application from the underlying platform technology. By using UML
(Unified Modelling Language) platform-independent models of an applica-
tion’s business functionality and behavior are created. These models can
then be realized on almost any platform via MDA [57].

AndroMDA [58] is an open source Model Driven Architecture (MDA) frame-
work which creates source code based on UML models. AndroMDA takes an
UML model and with the help of the Metadata Repository (MDR) it builds
a metamodel out of it. Velocity then takes the instantiated objects of the
metamodel and generates the text output according to the generation rules
which are provided by the cartridges. The output may be generated for any
platform e.g. .NET, Spring, J2EE etc.
AndroMDA provides cartridges for popular technologies such as Java, Struts,
Spring and Hibernate which are ready to use. Since AndroMDA is able
to generate output for any computer language and any architecture, the
developer may build her own cartridges or modify existing cartridges to suit
her needs.
AndroMDA is not only able to generate source code. Any sort of text output
may be produced. Examples for outputs are web pages, database scripts,
configuration files, e.g. for object-relational mapping.
To develop an application with AndroMDA the following steps have to be
performed [59]:

1. The architecture of the application has to be designed.

47

2. The business domain has to be modelled in a platform independent
way.

3. Before the code is generated the developer adds additional information
to the model.

4. The code is generated.

5. After the generation of the code the developer has to implement the
business logic.

3.5 Hibernate

Hibernate [60] is a framework for object-relational persistence and query-
ing. It provides object-relational mapping (ORM) for applications written
in Java. This means Java classes can be mapped to database tables of rela-
tional databases. To support the object-relational mapping Java data types
can be mapped to SQL data types. Hibernate relieves the developer of a lot
of coding work and allows her to concentrate on the business logic.
XML mapping documents are used to define the object-relational mapping
and generate the database tables. With Hibernate it is possible to create any
entity association be it one-to-many, one-to-one or many-to-many. Bidirec-
tional any unidirectional associations are supported as well.
Hibernate is compatible with any database which is JDBC compliant includ-
ing MySQL, PostgreSQL, HypersonicSQL, Oracle, Sybase, SAP DB, and In-
gres. Hibernate provides an object-oriented query language with a SQL-like
syntax and queries in the database’s SQL dialect.
The Hibernate service within JBoss is compatible to J2EE and can be con-
figured and managed with JMX. Hibernate provides a so called transparent
persistence which means that the developer only needs to take care of the ap-
propriate configuration while Hibernate deals with the storage and retrieval
of persistent objects.

48

Chapter 4

Results

To find suitable technologies which could be used to develop component-
based web applications literature and the Internet were searched.
Three technologies were found, Spring OSGI, ESB and Emersion based on
JPF. It was decided that Emersion and JPF should be tested whether they
were able to work together with the other technologies used at the institute.
To asses the feasibility of JPF and Emersion with the technologies used at
the institute, first the Emersion platform was tested with a few technologies
and it was extended with the embedded JBoss.
In order to be able to run component-based web applications in the JBoss
AS a modified version of Emersion was deployed in JBoss and then validated
with the technologies at the institute.
The composition of web applications using Hibernate into a single application
was successfully tested.
It was verified that J2EE applications built with AndroMDA are able to run
correctly in the modified Emersion/JBoss environment but it was not enough
time to build a composition of two or more J2EE applications.

4.1 Research

The search for technologies suitable to develop component-based web ap-
plications resulted in three candidate technologies: Spring OSGi, ESB and
Emersion based on JPF.
Emerstion and JPF were then chosen to be tested with the instiute’s tech-
nologies because of the following reasons:

• A plugin can consists of the business logic, database tables and the web
interface.

49

• A plugin can be integrated into the system via the plugin.xml file with-
out a lot of effort.

• The dependencies of plugins can be easily declared in the plugin.xml
file.

• The plugins usually can be integrated into the composed web applica-
tion without modifications.

An application connected to an ESB may also consist of business logic,
database tables and web interface. Additionally there exists an ESB im-
plementation of JBoss, the JBoss ESB (see Section 6.1), which is able to
work together with the JBoss application server. However, it takes some
time to learn how to use an ESB optimally and according to Breitling [40]
the use of an ESB is reasonable only if it is applied in the entire enterprise
and not just in small application.

With Spring OSGi only the business logic can be composed of modules.
Moreover the development of web applications has not yet been tested thor-
oughly. Spring OSGi based web applications have so far only been tested
with the Equinox Incubator OSGi provider and not with JBoss or any other
application or web server.

4.2 Embedding JBoss into Emersion

Struts is included in the Emersion platform but it was also possible to build
applications with plugins that used Hibernate, Spring and Tapestry. Since
there was only Tomcat embedded in Emersion, J2EE applications do not
work in Emersion.
To be able to test whether Emersion functions with J2EE application it was
necessary to add the embedded JBoss (see Section 3.3.6) to Emersion.
To embed JBoss into the Emersion platform it was necessary to create three
new plugins: the JBoss Wrapper plugin, the ApplicationServer plugin,
and the JBoss ApplicationServer plugin.
The JBoss Wrapper plugin contains the libraries of the embedded JBoss.
The ApplicationServer plugin includes an ApplicationServer interface which
is actually implemented in the ApplicationServer class contained in the
JBoss ApplicationServer plugin.
Both the interface and the implementation are similar to the web server plu-
gins. The ApplicationServer interface in the ApplicationServer plugin

50

Figure 4.1: JBoss embeddded in Emersion: The Platform plugin is the core of
the Emersion platform. The Webserver plugin and the Applicationserver plu-
gin are connected to the Platform plugin. The embedded Tomcat web server
and Java Servlet and JSP applications are plugged into the Webserver plu-
gin whereas the embedded JBoss and web applications that need the embedded
JBoss because they for instance consist of EJBs, are plugged into the Appli-
cationserver plugin. Wrapper plugins contain the libraries of e.g. embedded
JBoss, Tomcat or Struts.

51

defines methods such as starting the application server, stopping the applica-
tion server, deploying the web application, undeploying the web application,
etc. Also it was based on the interface in the web server plugin.
To implement the methods in the JBoss ApplicationServer class the em-
bedded JBoss API [61] was used.
It was then successfully tested with a small application. The application
consists of two plugins, each containing an Entity bean.

4.3 Embedding a JPF Application into JBoss

At the institute all web applications run in the JBoss application server (see
Section 3.3). Thus to enable compositions of web applications within the
institutes software environment an application based on JPF and similar to
Emersion would have to be ”embedded” in JBoss.
Therefore the Emersion platform and the Java Plugin Framework had to be
modified to be able to deploy and run web applications consisting of modules
in JBoss.

First it was necessary to modify the classloader implemented in JPF. Due to
the special classloading architecture of JBoss it was not possible to use the
original JPF classloader.
Second it had to be ensured that the modified version of the Emersion starts
when JBoss is started up. Afterwards the architecture of the new platform
application had to be defined.

4.3.1 JPF PluginClassLoader

The classloading in JPF is designed in a way that each plugin has its own
classloader. All the classes and resources that belong to the plugin are loaded
by this classloader. In Emersion a web application plugin is also loaded by
the same plugin specific classloader. This is possible because the Tomcat
embedded into Emersion does not provide its own classloading mechanism.
Therefore the developer can easily set the classloader for each web applica-
tion.
When a JPF application with web applications as plugins is running in JBoss,
it is not possible to simply assign a classloader to a plugin so that all the plu-
gin’s classes and resources are loaded by this classloader because of complex
classloading architecture in JBoss.
Thus the PluginClassLoader which is implemented in JPF had to be mod-
ified to allow it to be used within JBoss.

52

The most elementary modification concerned the superclass of the Plugin-

ClassLoader. In JPF the PluginClassLoader extends the URLClassLoader.
The URLClassLoader loads classes and resources from a path containing
URLs which refer to directories as well as JAR files.
In order to integrate the PluginClassLoader into the JBoss classloading
architecture (see Section 3.3.5), the PluginClassLoader must not inherit
the URLClassLoader but JBoss’ UnifiedClassLoader3.
The three most important methods of the PluginClassLoader are getUrls(),
collectImports(), and loadClass().
The static getUrls(final PluginManager manager, final PluginDe-

scriptor descr) method returns a URL array. This array contains all the
URLs that make up the plugin application for instance EARs, WARs, and
JAR libraries. The getUrls method is necessary to add these URLs to the
plugin specific classloader. This method was not changed in the new imple-
mentation of the PluginClassLoader.
The getImports method collects the imported plugins. These are the plugins
on which the application depends. This method which just adds the plugins
to hashmaps was slightly modified into a public method which returns a
string array with all the plugin IDs. This allows the plugins to be called
from outside the PluginClassLoader class (e.g. in the Emersion platform).
PluginClassLoader’s loadClass(final String name, final boolean re-

solve) method performs the usual classloading procedure as follows: First
the PluginClassLoader tries to find the class. If the class can not be found
loading is forwarded to the parent classloader.
Before the classloading procedure is started, it is first checked whether the
class to load is on the blacklist. A blacklist is part of the new implementation.
The developer may define classes to be on the black list, if these classes for
any reason should not be loaded with the plugin’s classloader.
In case the class is on the blacklist, the loading of this class is not handled
by the classloader of the plugin but is immediately delegated to the parent
classloader. This is necessary to avoid classloading problems that can be
caused by the fact that all the classes which are contained in the default
loader repository are also included in each scoped repository. This mainly
concerns classes from logging libraries or EJB libraries which can not be
found by the UnifiedClassLoaders of the scoped repository when the parent
delegation is turned off resulting in a NoClassDefFoundError.

53

4.3.2 Integration of JPF into JBoss AS

The next challenge was to ”embed”the JPF application into the JBoss Appli-
cation Server. To achieve this the deployment folder of the Emersion platform
was modified into a folder with a .WAR ending. The required META-INF and
WEB-INF folders were inserted into the WAR folder. Then the Emersion.war

folder was added to the JBoss deploy folder. This ensured it gets deployed
and runs just like any other web application in JBoss.

The Folder and File Structure of the JPF Application

The folder and file structure of the application is similar to the structure of
the Emersion files and folders.

Figure 4.2: Structure of Emersion.war: The WEB-INF folder contains the lis-
tener and the web.xml file. Various libraries are contained in the lib folder.
The plugins folder contains the plugins and the build folder contains the
compiled plugins. The build.xml file is used to compile the plugins and to
copy the plugins from the plugins folder to the build folder.

• The WEB-INF-folder contains the listener implementation and the web.xml
file in which the listener is declared.

• The lib-folder contains various libraries.

• The plugins-folder is the so-called plugin-repository containing these.

• The build-folder contains the compiled plugins (in case they are not
readily compiled in the plugin-repository) which are then used to com-
pose the application.

• The build.xml file is an ant file used to compile the plugins and copy
them from the plugins-folder to the build-folder.

54

The ServletContextListener

For the modified Emersion platform to run properly it is necessary that it is
started at the same time as JBoss. Therefore a ServletContextListener

was implemented. The listener was inserted into the WEB-INF-folder of Emer-
sion.war and a listener entry was added to the web.xml file. The task of the
listener is to invoke the main method of JPF’s boot class.
The boot class is the class which starts the JPF application. Its initAppli-
cation method configures and initializes the application.
Most of the initialization parameters are fetched from the boot.properties

file. The user can define for instance which implementations should be used
for the plugin registry or the path resolver, or which repositories the ap-
plication should scan for plugins. The only parameter which is absolutely
necessary is the name of the plugin which represents the entry point to the
entire JPF-based application.
The initApplication method of the boot class calls a method of the Ap-
plicationInitializer class. The ApplicationInitializer class is responsible
for the initialization of the application.
First all the folders which may contain plugins, the so-called plugin reposi-
tories, are scanned and the plugins with their files and folders are collected.
The located plugins are then made available to the system by the plugin
manager. Then an instance of the plugin which forms the entry point to the
application is created and returned to the Boot class which in turn starts
the entry point plugin. The entry point plugin consists of just a simple Java
file which has to implement a pre-defined JPF interface.

4.3.3 The Architecture of the JPF Application

The heart of the modified Emersion platform is the core plugin. The core
plugin is also the entry point to the application and is specified in the
boot.properties file. All plugins which contain parts of the web appli-
cation are plugged into the extension point of that core plugin.
In order to be able to access classes of any other plugin a plugin has to specify
on which plugins it depends on in the plugin.xml file.

4.3.4 The Core Plugin

The core plugin is started during the startup process of JPF.
Since the modified version of Emersion is running in JBoss AS it is not
possible to simply assign a classloader to each plugin and load the classes
and resources with this PluginClassLoader.

55

Figure 4.3: Architecture of the modified Emersion Platform: The modified
Emersion platform consists of a core plugin which is started during the JBoss
start-up process and into which all the web applications are plugged in.

Instead the classloading of the JPF-based application has to be modified
to work within to the JBoss classloading architecture. This is achieved by
implementing certain classloading tasks in the core plugin. In a conventional
JPF application these tasks are performed by the PluginClassLoader.

Plugin.xml

The two most important tags of the plugin.xml which define the core plugin
are the <plugin>-tag and the <extension-point>-tag.
The <plugin>-tag specifies the name of the plugin, its version and the class-
name. The class parameter declares the class which is instantiated and its
methods called when the plugin is started.

The <extension-point>-tag provides the functionality to add multiple web
applications to the modified Emersion platform.

56

1 <plug in id="org.emersion.platform"
2 ve r s i on="0.0.1"
3 class="org.emersion.platform.CorePlugin">
4 <runtime>
5 < l i b r a r y . . . />
6 . . .
7 </runtime>
8
9 <extens ion−po int id= . . . >

10 . . .
11 </extens ion−point>
12 </plugin>

Listing 4.1: The <plugin> tag defines the name of the plugin and the version
number and the class which is beeing instantiated at the start-up process of the
plugin. The <runtime> tag and the <extension point> tag are emdedded
into the <plugin> tag.

1 <extens ion−po int id="WebContext" extens ion−mu l t i p l i c i t y="any">
2 <parameter−de f id="id"
3 mu l t i p l i c i t y="one"
4 type="string" />
5 <parameter−de f id="dataLocation"
6 mu l t i p l i c i t y="one"
7 type="string" />
8 </extens ion−point>

Listing 4.2: The <extension-point> tag provides the functionality to add
multiple web applications to the modified Emersion platform.

57

CorePlugin.java

The CorePlugin.java class’ startApplication() method is called when
the core plugin is started.
The startApplication() method first collects all the plugins which are
plugged into the WebContext extension point. Then the following steps are
performed for each plugin:

1. The PluginClassLoader which JPF creates for each plugin is deter-
mined.

2. Each plugin gets its own scoped repository. A scoped repository is a
MBean of the type HeirarchicalLoaderRepository3 with a unique
name. This MBean is added to the MBeanServer of JBoss.A scoped
repository does not allow any other repository to access its classes. In
the modified Emersion platform it is required that plugins only share
code or resources when it is explicitly declared by adding this URLs
to the <library-tag> of the <runtime> part in the plugin.xml. To
be able to control which URLs can be accessed by other plugins it is
necessary that a scoped repository is created.

3. The classloader of the plugin is registered with the scoped repository
to ensure that this classloader is used when any of the plugin’s classes
is requested.

4. The classes and libraries which belong to the plugin are determined
by the getURLs() method of the PluginClassLoader. They are then
added to the classloader and subsequently added to the repository.

5. It is necessary that the plugin cannot only load its own classes but it
must also be able to load the classes belonging to plugins it depends on.
Since the repositories of these plugins do not share their classes too,
these classes must be added to the scoped repository of the requesting
plugin.

Therefore all the plugins on which the plugin depends are determined
with the getImports() method of the PluginClassLoader.

Then the classloaders of those imported plugins are determined and
added to the scoped repository of the plugin.

6. Every deployment unit of the plugin for example an EAR, a WAR, a
JAR, etc. is deployed in JBoss by calling the MainDeployer’s deploy
method.

58

4.3.5 Validation of the Approach

It is necessary to verify whether applications built with different technologies
are able to run as plugins correctly in JBoss and the modified Emersion
platform.
”Running correctly”means that the applications work as they should and use
the correct classloaders.
The next step was to test if two plugins work together correctly. It had to
be determined if the classes of imported plugins were loaded correctly by the
plugin specific classloader.

The classloading works correctly for simple JSP and Java Servlet applica-
tions that are built with Struts or Tapestry.

However it was found out that the loading of user interface resources such
as JSP files and Servlet files can not be handled by the PluginClassLoader.
The loading of these files is handled by the Tomcat web server service of JBoss
and it is never delegated to the JBoss classloading system. This means that
those files cannot be loaded by the PluginClassLoader which is a part of
the JBoss classloading system.

Hibernate

Plugins that use Hibernate (see Section 3.5) as their persistence mechanism
work well in the JBoss and modified Emersion environment. All the classes
are loaded with the correct classloader.
To test whether two Hibernate plugins can work together correctly with the
correct classloaders a simple example was used.
The example web application consists of a two plugins where each plugin has
only one database table, business classes and a user interface.
The task was to find out if the plugins could access objects of another plugin
and load them correctly. It turned out that it is possible to retrieve objects
of another plugin no matter whether a one-to-one, one-to-many or many-
to-many relationship exists between the fields of the database tables of the
different plugins.

However it is not possible to keep the plugins completely independent of
each other.
In the Hibernate configuration file .hbm.xml the relationship between two
database table fields are defined. At deployment time a web application
needs to know with which other application’ database table fields it has a

59

Figure 4.4: This is an example for an application that was used to test the
feasibility of Hibernate in combination with JPF. Each plugin consists of one
database table, the business logic and a web interface. A 1:n relationship
exists between the UserID column of the user table and the userid column
of the order table.

relation. That means it has to be able to read the .hbm.xml configuration file
of the other application. To achieve this, the .hbm.xml file of on application
has to be inserted into the other application. This means that the second
plugin cannot be reused unmodified in another application without the first
plugin.

AndroMDA and J2EE

Finally it was tested how the JBoss and modified Emersion environment
copes with J2EE applications that were designed and built with AndroMDA
(see Section 3.4).
The sample application was developed using the AndroMDA Project Tem-
plate [59]. This is a framework for the rapid development of J2EE applica-
tions with AndroMDA. The main part of the application is a Java Entity
Bean. An Entity Bean is a persistent business object. In the example the
bean is called ”MyCustomer” and has an Id field and a name field. The
content of these fields are stored in the database. The two main tasks of
the business logic are to create a new MyCustomer object and add it to the

60

database and to retrieve all MyCustomer objects that are stored.
Such an application runs in JBoss with the modified Emersion correctly and
uses the correct PluginClassLoaders. To avoid classloading problems with
classes od external libraries, the blacklist Section 4.3.1 was added to the
Implementation of the PluginClassLoader.
However if there are two such plugins in a modified Emersion environment,
then it is not possible to have duplicate EJB names. Each EJB name in the
composed application must be unique.

It has not yet been tested whether two or more AndroMDA and J2EE plugins
can be composed to a single application that works correctly.

Figure 4.5: The J2EE application that was tested consists of a single appli-
cation that was plugged into the core plugin. This application contains the
MyCustomer Entity Bean with an ID field and a name field.

61

Chapter 5

Discussion

The first task of the thesis was to search for a suitable technology for devel-
oping component-based web applications.
Three technologies were taken into consideration: Spring OSGi, Enterprise
Service Bus Architecture and JPF with the Emersion platform.
JPF in combination with the Emersion platform was then chosen to be tested
with technologies like Struts, Hibernate, Tapestry, J2EE and AndroMDA.
First the Emersion platform with Tomcat and JBoss embedded was tested
with those technologies. The Emersion platform then had to be modified so
that it could be used inside of JBoss.

5.1 Technologies for the Development of

Component-based Web Applications

Spring OSGi modules are able to find and use services provided by other
modules automatically. Additionally they can be added and removed dy-
namically from the running system.
The Spring OSGi concept only allows to split the business logic into modules.
That means a module does not consist of all three layers, the business logic,
the web interface and the database tables.
The development of web applications has not yet been tested thoroughly.
Spring OSGi based web applications have so far only been tested with the
Equinox Incubator OSGi provider.

Enterprise Service Bus is a technology which allows applications written
in different programming languages, using different data formats or program-
ming interfaces or are located on different servers to communicate with each
other via a connectivity infrastructure provided by the ESB.

62

JBoss provides an ESB implementation, the JBoss ESB (see Section 6.1).
The JBoss ESB is able to work together with the JBoss application server
and with the technologies that are compatible with JBoss like Struts, Spring,
Hibernate, J2EE, AndroMDA and Tapestry.
However it takes some time to learn how to use an ESB optimally and ac-
cording to Breitling [40] the use of an ESB is reasonable only if it is applied
in the entire enterprise and not just in small application.

The Emersion platform which is based on JPF was then examined in
more detail because it is easy to integrate a plugin into the system and
declare its dependencies with the plugin manifest file. Moreover plugins
can be integrated into the system without modifications. A plugin in JPF
may consist of the web interface, the business logic and the database table
definitions.

5.2 Assessment of the collaboration of JPF

and Emerision with Web Technologies

It was assessed whether the Emersion platform was compatible with the
technologies used at the institute e.g. Struts, AndroMDA, J2EE, Spring,
Hibernate and Tapestry.
With the Emersion platform it was possible to compose web applications
using Struts, Hibernate, Spring and Tapestry. After JBoss was emdedded
into the Emersion platform, it was also possible to build component-based
applications with plugins containing EJBs.

Since it is desireable that component-based web applications can also run
in the JBoss Application Server which is used at the institute, the next step
was to integrate a modified version of the Emersion platform into JBoss.
It was possible to compose web applications with plugins using Struts and
Tapestry. Plugins that use Hibernate could also be composed but some of
the plugins could not be integrated completely unmodified. J2EE applica-
tions built with AndroMDA are able to run in the modified Emersion and
JBoss environment with the correct classloader but it has not yet been tested
whether it is possible to successfully compose two or more plugins that use
J2EE.

It has been verified that plugins can be easiliy integrated into an applica-
tion with the modified Emersion platform. Except for AndroMDA and J2EE

63

which are still to be tested, all required technologies are compatible with the
modified Emersion platform in JBoss. A disadvantage is the loading of JSPs
and Java Servlets cannot be handled by the PluginClassloader because this
is the task of the Tomcat service in JBoss. Furthermore the core plugin has
a structure that does not allow to deploy plugins while the application is
running. As the Hibernate example shows, it is not possible to always keep
the plugins independent of each other.

5.3 Outlook

There is still work to do until it is definitely verified that JPF can be used to
build component-based webapplications with modules that were developed
using the institute’s technologies mentioned above.
First it has to be tested whether it is possible to compose applications out
of two or more plugins which use J2EE and are built with AndroMDA.
Next the modified Emersion platform should be tested in JBoss 5 which was
released a few month ago. At the moment the modified Emersion platform
is integrated into JBoss 4.

64

Chapter 6

Appendix

6.1 ESB Implementations

6.1.1 Open ESB

Khire, Liu and Naderzad [62] describe Open ESB as a standard, decentralized
integration infrastructure. It provides normalized message routing and prox-
ying and is based on asynchronous XML message exchanges. Management
and monitoring are centralized.
With Open ESB it is possible to compose Web Services and enterprise ap-
plications to a loosely coupled system. A true Service-Oriented Architecture
can be implemented with Open ESB because the application composition
can be composed and recomposed seamlessly.

The current version, Open ESB 2.0 Beta, consists of the following compo-
nents [63]:

• JBI Framework: This framework implements a JBI instance. JBI is
short for Java Business Integration. It consists of a platform and a ser-
vice assembly. The platform is extensible and pluggable and makes the
cooperation between integration technology and Web services possible.
The service assembly is a document which describe services, artifacts
and routing of a SOA application. [64]

• BPEL Service Engine: The Business Process Execution Language (BPEL)
is utilized to organize the processes in a composed application.

• Java EE Service Engine enables the EJB services to connect with the
hosting application server.

65

• XSLT Service Engine is used for transforming XML documents with
the help of XSL style sheets.

• Intelligent Event Processor Service Engine is used for event notification
and event triggers and manages real-time business event collection and
processing.

• SQL Service Engine enables SQL services to other JBI components.

• File Binding Component offers a transport service to a file system and
makes it possible that the JBoss environment can interact with the file
system.

• FTP Binding Component enables messaging using the FTP protocol.

• HTTP Binding Component responsible for connecting a JBI instance
to external web services and for connecting those external services to
the JBI instance.

• JDBC Binding Component makes it possible to configure and connect
to databases that support the JDBC 3.0 API specification.

• JMS Binding Component supports Java Messaging Service (JMS) for
the transport of messages.

• SMTP Binding Component enables the configuration and connection
to SMTP servers and clients within the JBI environment.

• WebSphere MQ Binding Component enables the configuration and con-
nection to WebSphere MQ servers within a JBI environment.

So far Open ESB only works with GlassFish and Sun Application Server.
Only an experimental version of Open ESB runs on JBoss. [64]

6.1.2 JBoss ESB

This ESB was developed with the JBoss Enterprise Middleware Suite (JEMS)
technology and is available as open source since July 2006. The core of JBoss
ESB is Rosetta.
Rosetta was build to make it easier to interoperate between different com-
ponents, applications and services. It also offers an infrastructure and tools
that can be configured to function with different transport mechanisms, for
instance email or JMS. Furthermore a general purpose object repository, a
way to log the interactions and pluggable data transformation mechanisms

66

are provided. JBoss ESB is Java specific. [65] It provides a base transport
mechanism, a pluggable architecture, a transformation engine for transform-
ing data formats, a service registry and it supports several messaging services.
In JBoss ESB everything is a logical service. At the architectural level these
services interact with messages. [26]
The messaging infrastructure (MI) makes up the core of JBoss ESB. The mes-
saging infrastructure is abstract, multiple different implementations may be
provided. For instance not only JMS can be used but also a pure Web Service
deployment may be supported. In JBoss ESB the mapping of service descrip-
tion and service contract to the technology is dynamic and configurable. This
means that many SOA implementation technologies are supported. Moreover
JBoss ESB supports several implementations of registry, e.g. UDDI. Such a
registry is needed to publish, discover and consume a service. The ESB also
provides a versioning service. It is possible to integrate existing services into
the ESB environment without changing these services. The core of JBoss
ESB consist of the following parts:

• Message Listener and Message Filtering Message Listeners listen for
messages and forwards them to a pipeline which filters the messages
and routes to the adequate message endpoint.

• Data transformation is carried out by the SmooksTransformer action
processor. Smooks is a transformation implementation and manage-
ment framework which permits the developer to write the transforma-
tion logic in XSLT, Java, etc.

• Content Based Routing Service.

• Message Repository to save the messages and events that are exchanged
in the ESB.

Not all service that can interact via the ESB need to be implemented us-
ing JBoss ESB. There is an Interoperability Bus within ESB that makes it
possible to plug such ESB-unaware services into the ESB.
The communication between services that are aware of JBoss ESB, that is,
services which were developed with JBoss ESB, is realized through messages.
Such a message has a standardized format for information exchange. It con-
sists of a header, a context, a body and attachments.
The header includes routing and addressing information.
The content of the context are session related information, e.g. transaction
or security contexts.

67

The body can contain a byte array for arbitrary data. The way the data
of this array is interpreted by the service must be specified by the service
itself. Additionally it may contain a list of objects which have arbitrary
types. The specific object type defines how the objects are serialized to or
from the message body when the message is transmitted.

1 public interface Body
2 {
3 public void add (St r ing name , Object va lue) ;
4 public Object get (S t r ing name) ;
5 public Object remove (St r ing name) ;
6 public void setContents (byte [] content) ;
7 public byte [] getContents () ;
8 public void r ep l a c e (Body b) ;
9 public void merge (Body b) ;

10 }

Listing 6.1: The Body of a message can contain a byte array for arbitrary
data and objects.

An attachment may for instance contain binary document formats like zip
files, images, audio files, etc.

In order for applications which are not ESB-aware to be able to commu-
nicate with services within the ESB and vice versa, the concept of a gateway
is implemented in the ESB. This is a server which is able to accept messages
from ESB-unaware services and relays them to their destination. The gate-
way accepts arbitrary objects which are contained in files, for instance JMS
messages or SQL tables whereas the ESB listeners are only able to process
normalized JBoss ESB messages. The gateway takes the object from the
ESB-unaware service and constructs an ESB message object from it. This
message is sent to an ESB-aware target service. The target service is deter-
mined at configuration time and at runtime the registry returns the correct
address for the target service.

JBoss ESB Configuration

The two main elements the developer has to configure are providers and
services. The <providers> tag includes all bus providers of an instance of
the ESB. A <provider> may have several <bus> definitions and various
properties.
Within the <services> tag all services of the ESB instance are defined. A
service has a name and a category under which it is stored in the Service

68

Registry, and a human readable description. A service has listeners and
actions.
The listener’s attributes are its name, a reference to the id of the bus through
which the listener receives messages, the limitation of active message process-
ing threads and whether it is an ESB-aware listener or a gateway.
The task of an action is to process the content of a received message. The
action is defined through its name, the name of the class which implements
the action and the name of the method which processes the message.

6.2 JPF Plugin Manifest

The main parts of the plugin manifest file are described here.

<plugin>

This tag contains all other elements of the manifest file. Furthermore the
plugin id, the plugin version, the plugin vendor, the plugin class and the
plugin docs path can be specified here, see Listing 6.2.

1 <plug in id="org.test" ve r s i on="0.0.1" class="org.test.MyTest">

Listing 6.2: The <plugin> tag defines the name od the plugin as well as the
version number and the main class of the plugin.

<requires>

All other plugins the current plugin depends on must be listed here. This
means listing those plugins containing code or resources which are needed
by the plugin. The ID of the imported plugin has to be declared and there
are several attributes that can be defined, for example ”exported”, ”optional”
and ”reverse-lookup”.

If the attribute ”exported” is enabled plugins depending on the current plu-
gin will be able to ”see” the imported plugin. Setting the attribute ”optional”
means the imported plugin is not essential for this plugin, and thus no run-
time exception is thrown if the plugin to be imported does not exist. When
”reverse-lookup” is set to true the imported plugin is also able to see the code
of the current plugin.
The default value of all three attributes is ”false”.

69

1 <r equ i r e s >
2 <import plugin−id="org.myplugin" exported="true"
3 reve r s e−lookup = true/>
4 </r equ i r e s >

Listing 6.3: The <requires> tag declares the name of the plugin to be im-
ported and whether plugins depending on the current plugin will be able to
”see” the imported plugin as well as whether the imported plugin is also able
to see the code of the current plugin.

<runtime>

Code and resources which the plugin contributes to the application are spec-
ified here. The user has to define a name for the code or exported resource.
Moreover the path to the resource or code has to be specified and it also has
to be specified whether it is code or resource. A version may also be declared.

1 <runtime>
2 < l i b r a r y id="jsp-api" path="lib/jsp-api.jar" type="code">
3 <export p r e f i x="*"/>
4 </ l i b r a ry >
5 </runtime>

Listing 6.4: The <runtime> tag contains <library> tags which define the
name and the path of code or resources of the plugin. It is also defined whether
it should be allowed to export code or resources.

The export tag means that this code (or resource) can be imported in another
plugin.

<extension point>

This manifest element specifies one or more points where other plugins can
be plugged in. The extension point requires a name and the parent plugin id,
the parent plugin point and the extension multiplicity may be declared. The
extension multiplicity describes how many plugins may extend this extension
point. There are four possibilities:

• any: an arbitrary number of extensions can be added at this point.

• one: just one extension can be added at this extension point.

• one-per-plugin: only one extension of a plugin may be added.

70

• none: it is not possible to add an extension at this extension point
because this is an abstract extension point that can only be inherited
by another extension point.

An extension point can also define parameters whose values must be provided
by an extension. It is up to the user which parameters he wants or needs. A
parameter may be a plugin id, a extension point id, a value from a predefined
list, a number, a string, a date, a time, etc.

1 <extens ion−po int id="Context">
2 <parameter−de f id="id"/>
3 <parameter−de f id="isSystem" mu l t i p l i c i t y="none-or-one"
4 type="boolean"/>
5 </extens ion−point>

Listing 6.5: The <extension-point> tag can define parameters whose values
must be provided by an extension. It is up to the user which parameters he
wants or needs.

<extension>

The extension is the functionality that is added at the extension point. It
must be specified in which plugin the extension is specified, the id of the
extension point must be specified and the extension itself must be named.
Also the values of the parameters which are expected by the extension point
must be defined.

1 <extens i on plugin−id="org.test" point−id="Context" id="root">
2 <parameter id="id" value="standard -root"/>
3 <parameter id="isSystem" value="false/"/>
4 </extens ion>

Listing 6.6: The <extension> tag declares in which plugin the extension is
specified. The id of the extension point must be specified and the extension
itself must be named. Also the values of the parameters which are expected
by the extension point must be defined.

<plugin fragment>

The plugin fragment tag contains the manifest of a plugin fragment. A plu-
gin fragment belongs to some plugin and contributes code and / or resources

71

to this plugin. A plugin fragment is simple a part of the plugin that has
its own manifest file. Nevertheless the plugin and the plugin fragment are
loaded with the same class loader.

The plugin fragment must specify its id and among others attributes like
version, docs path, vendor, the id and version of the plugin it belongs to.

1 <plugin−fragment id="org.myfragment" ve r s i on="1.2.4"
2 plugin−id="org.myplugin" plugin−ve r s i on="1.2.4">
3 <runtime>
4 < l i b r a r y id= . . . / >
5 </runtime>
6 <extens i on plugin−id =..>
7 <parameter id= . . />
8 </extens ion>
9 <extens i on plugin−id =..>

10 . . .
11 </extens ion>
12 </plugin−fragment>

Listing 6.7: The <plugin-fragment> tag must specify its id and among
others attributes like version

<doc>

With the <doc>-tag documentation for any part of the plugin (runtime,
plugin fragment, etc.) may be created. Additional information may be
provided to create something like a javadoc for plugins by automatically
processing these tags. The documentation can be simple text or a link to
another document.

1 <extens ion−po int id="MyExtensionPoint">
2 <parameter−de f id="class">
3 <doc capt ion="application class">
4 <doc−text>Should implement interface A
5 and have empty public cons t ructor </doc−text>
6 </doc>
7 </parameter−def>
8 </extens ion−point>

Listing 6.8: The <doc caption> tag enables the creation of documentation
for any part of the plugin.

72

Bibliography

[1] Gaedke M and Rehse J. Supporting compositional reuse in
component-based web engineering. In SAC ’00: Proceedings of the
2000 ACM symposium on Applied computing, 927–933, New York, NY,
USA, 2000. ACM Press.

[2] Krueger CW. Software reuse. ACM Computing Surveys,
24(2):131–183, 1992.

[3] McIlroy D. Mass-produced software components. In Naur P and
Randell B, editors, Software Engineering, 138–155. Scientific Affairs
Division, NATO, 1968. Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October 1968.

[4] Szyperski C. Component Software - Beyond Object-Oriented
Programming. Addison-Weseley, Boston, MA, USA, 1999.

[5] Brown AW and Wallnau KC. The Current State of CBSE. IEEE
Software, 15(5):37–46, 1998.

[6] Nierstrasz O and Lumpe M. Komponenten, komponentenframeworks
und gluing. HMD - Theorie und Praxis der Wirtschaftsinformatik,
197:8–23, 1997.
http://www.iam.unibe.ch/ scg/Archive/Paper-
s/Nier97aKomponentenUndGluing.pdf.

[7] Cai X, Lyu M, Wong K, and Ko R. Component-Based Software
Engineering: Technologies, Development Frameworks and Quality
Assurance Schemes. In APSEC ’00: Proceedings of the Seventh
Asia-Pacific Software Engineering Conference, 372, Washington, DC,
USA, 2000. IEEE Computer Society.

[8] Graef G and Gaedke M. Construction of adaptive web-applications
from reusable components. In EC-WEB ’00: Proceedings of the First

73

http://www.iam.unibe.ch/~scg/Archive/Papers/Nier97aKomponentenUndGluing.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Nier97aKomponentenUndGluing.pdf

International Conference on Electronic Commerce and Web
Technologies, 1–12, London, UK, 2000. Springer.

[9] Martin L. Visuelles Komponieren und Testen von Komponenten am
Beispiel von Agenten im elektronischen Handel. PhD thesis, University
of Technology, Darmstadt, 2003.

[10] Sametinger J. Classification of Compostition and Interoperation.
Poster Session, OOPSLA ´96, San Jose, CA, 1996.
http://www.se.jku.at/publications/pdf/TR-SE-96.17.pdf.

[11] Schmietendorf A, Dumke R, Dimitrov E, and Nakonz S.
Bewertungsaspekte der komponentenorientierten Softwareentwicklung
am Beispiel von Java-Komponenten. Preprint, 2002. Fakultät für
Informatik, Otto-von-Guericke-Universität Magdeburg.

[12] Frakes WB and Kang K. Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31(7):529–536, 2005.

[13] Zenger M. Programming Language Abstractions for Extensible
Software Components. PhD thesis, Swiss Federal Institute of
Technology, Lausanne, 2004.

[14] Atkinson C, Bär H, Bayer J, Bunse C, Girard JF, Gross HG,
Kettemann S, Kolb R, Kühne T, Romberg T, Seng O, Sody P, and
Tolzmann E. Handbuch zur komponentenbasierten
Softwareentwicklung. Fraunhofer Institut Experimentelles Software
Engineering, Kaiserslautern, 2003.
http://app2web.fzi.de/themen/ap4/cbse handbuch.pdf.

[15] Ramel S. Software Reuse in Free Software: State-of-the-Art.
http://libre.tudor.lu/results/FOSSSoftwareReuse-StateOfTheArt-
v1.0.pdf,
2005.

[16] Monroe RT and Garlan T. Style-based reuse for software architectures.
In ICSR ’96: Proceedings of the 4th International Conference on
Software Reuse, 84, Washington, DC, USA, 1996. IEEE Computer
Society.

[17] Gamma E, Helm R, Johnson R, and Vlissides J. Design Patterns -
Elements of Reusable Object-Oriented Software. Addison-Weseley,
Boston, MA, USA, 1998.

74

http://www.se.jku.at/publications/pdf/TR-SE-96.17.pdf
http://app2web.fzi.de/themen/ap4/cbse_handbuch.pdf
http://libre.tudor.lu/results/FOSSSoftwareReuse-StateOfTheArt-v1.0.pdf
http://libre.tudor.lu/results/FOSSSoftwareReuse-StateOfTheArt-v1.0.pdf

[18] Osterrieder C. Komponentenmodelle für Web-Anwendungen. Master’s
thesis, University of Salzburg, 2004.

[19] Object Management Group. Common Object Request Broker
Architecture: Core Specification, 2004.
http://www.omg.org/technology/documents/corba spec catalog.htm .

[20] McHale C. CORBA Explained Simply. Xhaus.com, Reading, UK, 2004.

[21] COM: Component Object Model Technologies.
http://www.microsoft.com/com/default.mspx
May 15th, 2007

[22] JavaBeans.
http://java.sun.com/products/javabeans/
May 15th, 2007

[23] Sun Microsystems. Java Beans Specification, 1997.
http://java.sun.com/products/javabeans/docs/spec.html.

[24] Nickull D. Service Oriented Architecture, 2005.
http://www.adobe.com/enterprise/
pdfs/Services Oriented Architecture from Adobe.pdf.

[25] Ortiz S. Getting on board the Enterprise Service Bus. IEEE Computer,
40(4):15–17, 2007.

[26] JBoss ESB.
http://labs.jboss.com/jbossesb/
May 15th, 2007

[27] Severiens T. Tutorial: WebServices, 2003.
http://www.aki-
dpg.de/Dokumente/Bad Honnef 2003/webservicestutorial.pdf.

[28] Spring Application Framework.
http://www.springframework.org
May 15th, 2007

[29] Johnson R. Introduction to the Spring Framework, 2005.
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework.

[30] Tate B and Gehtland J. Spring: A Developer’s Notebook. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2005.

75

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.microsoft.com/com/default.mspx
http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/docs/spec.html
http://www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture% _from_Adobe.pdf
http://www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture% _from_Adobe.pdf
http://labs.jboss.com/jbossesb/
http://www.aki-dpg.de/Dokumente/Bad_Honnef_2003/webservicestutorial.pdf
http://www.aki-dpg.de/Dokumente/Bad_Honnef_2003/webservicestutorial.pdf
http://www.springframework.org
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework

[31] OSGI-The dynamic module system for Java.
http://www.osgi.org
May 15th, 2007

[32] Spring-OSGI.
http://www.springframework.org/osgi
May 15th, 2007

[33] Raible M. Spring-OSGI with Adrien Colyer, 2006.
http://raibledesigns.com/rd/entry/tse spring osgi with adrian.

[34] Open SOA Collaboration. Power Combination: SCA, OSGi and Spring,
2007.
http://www.osoa.org/download/attachments/250/Power
Combination SCA Spring OSGi.pdf?version=3.

[35] Kolb B, Lippert M, and Wütherich G. Spring and OSGi: Plattform der
Zukunft, 2006.
http://www.it-agile.com/fileadmin/docs/WJAX2006-SpringOSGi.pdf.

[36] Overview of OSGi.
http://www-sop.inria.fr/oasis/Proactive/doc/release-doc/html/OSGi.html
May 15th, 2007

[37] Keen M, Acharya A, Bishop S, Hopkins A, Milinski S, Nott C, Robinson R,
Adams J, and Verschueren P. Patterns: Implementing an SOA Using an
Enterprise Service Bus. IBM.Com/Redbooks, Armonk, NY, USA, 2004.
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf.

[38] Sample Architectures.
http://dev2dev.bea.com/pub/a/2006/01/ajax-portal-1.html?page=2
May 15th, 2007

[39] Wehner H. Was bringt ein Enterprise Service Bus, 2005.
http://www.computerwoche.de/produkte technik/software/554063/.

[40] Breitling H. Open Source Enterprise Service Busses, 2006.
http://www.informatik.uni-hamburg.de/SWT/attachments/LVTermine/
ESB%20Begriffe%20Konzepte%20Standards.pdf.

[41] WebSphere Software.
http://www-
306.ibm.com/software/info1/websphere/index.jsp?tab=integration/esb
May 15th, 2007

76

http://www.osgi.org
http://www.springframework.org/osgi
http://raibledesigns.com/rd/entry/tse_spring_osgi_with_adrian
http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OSGi.pdf?version=3
http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OSGi.pdf?version=3
http://http://www.it-agile.com/fileadmin/docs/WJAX2006-SpringOSGi.pdf
http://www-sop.inria.fr/oasis/Proactive/doc/release-doc/html/OSGi.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf
http://dev2dev.bea.com/pub/a/2006/01/ajax-portal-1.html?page=2
http://www.computerwoche.de/produkte_technik/software/554063/
http://www.informatik.uni-hamburg.de/SWT/attachments/LVTermine/ESB%20Begriffe%20Konzepte%20Standards.pdf
http://www.informatik.uni-hamburg.de/SWT/attachments/LVTermine/ESB%20Begriffe%20Konzepte%20Standards.pdf
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=integration/esb
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=integration/esb

[42] Enterprise Service Bus.
http://www.oracle.com/appserver/esb.html
May 15th, 2007

[43] BEA AquaLogic Service Bus.
http://www.bea.com
May 15th, 2007

[44] Olshansky D. Java Plugin Framework.
http://jpf.sourceforge.net
May 15th, 2007

[45] Eclipse.
http://www.eclipse.org
May 15th, 2007

[46] Olshansky D. Emersion Platform.
http://emersion.sourceforge.net
May 15th, 2007

[47] The Apache Ant Project.
http://ant.apache.org/
May 15th, 2007

[48] Javadoc Tool.
http://java.sun.com/j2se/javadoc/
May 15th, 2007

[49] JBoss.
http://labs.jboss.com/jbossas/
May 15th, 2007

[50] JBoss Application Server - Standards Based Infrastructure for the
Enterprise, 2005.
http://www.jboss.com/pdf/JBossAS-EnterpriseInfrastructure.pdf.

[51] Azoff M. Application Server Technology AUDIT, 2005.
http://www.jboss.com/pdf/JBossAS-ButlerTechAudit.pdf.

[52] JBoss Group. Getting started with JBoss 4.0, 2006.
http://docs.jboss.org/jbossas/getting started/v5/html/.

[53] JBoss Group. The JBoss 4 Application Server Guide, 2006.
http://docs.jboss.org/jbossas/jboss4guide/r5/html/.

77

http://www.oracle.com/appserver/esb.html
http://www.bea.com/
http://jpf.sourceforge.net
http://www.eclipse.org
http://emersion.sourceforge.net
http://ant.apache.org/
http://java.sun.com/j2se/javadoc/
http://labs.jboss.com/jbossas/
http://www.jboss.com/pdf/JBossAS-EnterpriseInfrastructure.pdf
http://www.jboss.com/pdf/JBossAS-ButlerTechAudit.pdf
http://docs.jboss.org/jbossas/getting_started/v5/html/
http://docs.jboss.org/jbossas/jboss4guide/r5/html/

[54] JBossClassLoadingUseCases.
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossClassLoadingUseCases
May 15th, 2007

[55] Embedded JBoss.
http://wiki.jboss.org/wiki/Wiki.jsp?page=EmbeddedJBoss
May 15th, 2007

[56] Burke B. Embedded JBoss: JBoss without the Application Server.
http://blogs.jboss.com/
May 15th, 2007

[57] OMG Model Driven Architecture.
http://www.omg.org/mda/
May 15th, 2007

[58] AndroMDA.
http://www.andromda.org
May 15th, 2007

[59] Truskaller T. Data Integration into a Gene Expression Database. Master’s
thesis, University of Technology, Graz, 2003.

[60] Relational Persistence for Java and .NET.
http://www.hibernate.org
May 15th, 2007

[61] Package org.jboss.ejb3.embedded.
http://docs.jboss.org/ejb3/embedded/api/org/jboss/ejb3/embedded/package-
summary.html
May 15th, 2007

[62] Khire A, Liu L, and Naderzad A. Service Oriented Architecture using Open
ESB.
http://www.snpnet.com/customer pub/sun/SOA OpenESB/
May 15th, 2007

[63] Service Oriented Business Integration.
http://java.sun.com/integration/openesb2 0/index.jsp
May 15th, 2007

[64] Open ESB.
https://open-esb.dev.java.net/
May 15th, 2007

[65] JBoss ESB 4.0 GA Programmers Guide, 2006.
http://labs.jboss.com/jbossesb/docs/4.0GA/manuals/html/ProgrammersGuide.html.

78

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossClassLoadingUseCases
http://wiki.jboss.org/wiki/Wiki.jsp?page=EmbeddedJBoss
http://blogs.jboss.com/
http://www.omg.org/mda/
http://www.andromda.org
http://www.hibernate.org
http://docs.jboss.org/ejb3/embedded/api/org/jboss/ejb3/embedded/package-summary.html
http://docs.jboss.org/ejb3/embedded/api/org/jboss/ejb3/embedded/package-summary.html
http://www.snpnet.com/customer_pub/sun/SOA_OpenESB/
http://java.sun.com/integration/openesb2_0/index.jsp
https://open-esb.dev.java.net/
http://labs.jboss.com/jbossesb/docs/4.0GA/manuals/html/ProgrammersGuide.html

	List Of Figures
	Glossary
	1 Introduction
	1.1 Objectives

	2 Background
	2.1 Component-based Software Development (CBSD)
	2.1.1 Components
	2.1.2 Component-based Software Development
	Reuse
	Conceptual Reuse
	Program Reuse
	Reuse of Components
	Black Box Reuse vs. White Box Reuse

	Extensibility
	Extensibility Requirements
	White Box Extensibility
	Gray Box Extensibility
	Black Box Extensibility

	2.1.3 Component Technologies
	CORBA
	COM
	Java Beans and Enterprise Java Beans

	2.1.4 Service-Oriented Architecture (SOA)

	2.2 Spring OSGi
	2.3 Enterprise Service Bus Architecture
	2.4 Java Plugin Framework (JPF)
	2.4.1 The Main Features of JPF
	2.4.2 Emersion

	3 Methods
	3.1 JPF
	3.1.1 Plugin Manifest
	3.1.2 The JPF System
	Plugin Registry
	Plugin Manager
	Plugin Class Loader

	3.1.3 Tools
	3.1.4 Boot Library

	3.2 Emersion
	3.2.1 Architecture of Emersion

	3.3 JBoss Application Server
	3.3.1 JBoss Architecture
	3.3.2 JBoss Features
	Security
	EJB (Enterprise Java Beans) Container
	Hibernate Integration
	JNDI Naming Service
	Transactions
	Clustering
	JBoss Cache

	3.3.3 JBoss Configuration
	3.3.4 Deployers
	3.3.5 JBoss ClassLoading
	Scoped Repositories
	Advantages and Disadvantages
	Classloading and Deployers

	3.3.6 Embedded JBoss

	3.4 AndroMDA
	3.5 Hibernate

	4 Results
	4.1 Research
	4.2 Embedding JBoss into Emersion
	4.3 Embedding a JPF Application into JBoss
	4.3.1 JPF PluginClassLoader
	4.3.2 Integration of JPF into JBoss AS
	The Folder and File Structure of the JPF Application
	The ServletContextListener

	4.3.3 The Architecture of the JPF Application
	4.3.4 The Core Plugin
	Plugin.xml
	CorePlugin.java

	4.3.5 Validation of the Approach
	Hibernate
	AndroMDA and J2EE

	5 Discussion
	5.1 Technologies for the Development of Component-based Web Applications
	Spring OSGi
	Enterprise Service Bus
	The Emersion platform

	5.2 Assessment of the collaboration of JPF and Emerision with Web Technologies
	5.3 Outlook

	6 Appendix
	6.1 ESB Implementations
	6.1.1 Open ESB
	6.1.2 JBoss ESB
	JBoss ESB Configuration

	6.2 JPF Plugin Manifest
	<plugin>
	<requires>
	<runtime>
	<extension point>
	<extension>
	<plugin fragment>
	<doc>

